首页 > 其他 > 详细

力扣——N皇后II

时间:2019-03-26 20:38:04      阅读:192      评论:0      收藏:0      [点我收藏+]

皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

技术分享图片

上图为 8 皇后问题的一种解法。

给定一个整数 n,返回 n 皇后不同的解决方案的数量。

示例:

输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。
[
 [".Q..",  // 解法 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // 解法 2
  "Q...",
  "...Q",
  ".Q.."]
]

class Solution {

    /**
     * 记录某列是否已有皇后摆放
     */
    private boolean col[];

    /**
     * 记录某条正对角线(左上右下)是否已有皇后摆放(某条对角线对应的摆放位置为 x - y + n - 1)
     */
    private boolean dia1[];

    /**
     * 记录某条斜对角线(左下右上)是否已有皇后摆放(某条对角线对应的摆放位置为 x + y)
     */
    private boolean dia2[];

    public int totalNQueens(int n) {
        // 依然可以使用 51 号问题的解决思路,但问题是有没有更好的方法
        col = new boolean[n];
        dia1 = new boolean[2 * n - 1];
        dia2 = new boolean[2 * n - 1];
        return putQueen(n, 0);
    }

    /**
     * 递归回溯方式摆放皇后
     *
     * @param n     待摆放皇后个数
     * @param index 已摆放皇后个数
     */
    private int putQueen(int n, int index) {
        int res = 0;
        if (index == n) {
            return 1;
        }
        // 表示在 index 行的第 i 列尝试摆放皇后
        for (int i = 0; i < n; i++) {
            if (!col[i] && !dia1[i - index + n - 1] && !dia2[i + index]) {
                // 递归
                col[i] = true;
                dia1[i - index + n - 1] = true;
                dia2[i + index] = true;
                res += putQueen(n, index + 1);
                // 回溯
                col[i] = false;
                dia1[i - index + n - 1] = false;
                dia2[i + index] = false;
            }
        }
        return res;
    }

    public static void main(String[] args) {
        int n = new Solution().totalNQueens(8);
        System.out.println(n);
    }
}

 

力扣——N皇后II

原文:https://www.cnblogs.com/JAYPARK/p/10603112.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!