Given a square array of integersA, we want the minimum sum of a falling path throughA.A falling path starts at any element in the first row, and chooses one element from each row. The next row‘s choice must be in a column that is different from the previous row‘s column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]] Output: 12 Explanation: The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9][2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9][3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]The falling path with the smallest sum is
[1,4,7], so the answer is12.
Note:
1 <= A.length == A[0].length <= 100-100 <= A[i][j] <= 100
Approath #1: Bottom to Top. [C++]
class Solution {
public int minFallingPathSum(int[][] A) {
int l = A.length;
int[][] dp = new int[l+1][l+1];
for (int i = 0; i < l; ++i)
for (int j = 0; j < l; ++j)
dp[i][j] = A[i][j];
for (int i = l-2; i >= 0; --i) {
for (int j = 0; j < l; ++j) {
int left = j > 0 ? dp[i+1][j-1] : Integer.MAX_VALUE;
int right = j < l-1 ? dp[i+1][j+1] : Integer.MAX_VALUE;
int down = dp[i+1][j];
dp[i][j] += Math.min(left, Math.min(down, right));
// System.out.print("dp[" + i + "][" + j + "]= " + dp[i][j] + " ");
}
// System.out.println();
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < l; ++i)
ans = Math.min(ans, dp[0][i]);
return ans;
}
}
Analysis:
Solving this problem using the thought of ‘bottom to top‘, we calculate the minimum sum using dp[i][j] = dp[i][j] + min(left, right, down).
Finally, we can find the answer at the first row.
原文:https://www.cnblogs.com/ruruozhenhao/p/10602121.html