常用英文:univariate Gaussian, normal distribution, Gaussian distribution等
如果一个随机变量的概率密度函数为:
\[
{\displaystyle f(x;\mu, \sigma ^ 2)={1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2} \over 2\sigma ^{2}}}}
\]
则称一个随机变量\(\boldsymbol{X}\)服从正态分布,记为\({\displaystyle X\sim N(\mu ,\sigma ^{2})}\),其中的\(\mu\)和\(\sigma^{2}\)分别称为均值和方差。
当\(\mu = 0\),\(\sigma ^ 2 = 1\)时称为标准正态分布。
英文:Multivariate normal distribution
如果多维随机变量\({\displaystyle \ \mathbf{X}=[X_{1},\dots ,X_{k}]^{T}}\)的概率密度函数由下式给出:
\[
f(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
\]
说明\(\mathbf{X}\)服从多元正态分布,记为 \(\displaystyle \mathbf {X} \ \sim \ {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})\),其中要求其协方差矩阵\({\boldsymbol {\Sigma }}\)是正定矩阵,\(x, \mu \in \mathbb{R}^n\)
如果\({\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }}\)被称为standard normal random vector ,如果他的每个分量相互独立且都是标准正态分布,即\({\displaystyle X_{n}\sim \ {\mathcal {N}}(0,1)},n=1,...,k\)
A real random vector \({\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{k})^{\mathrm {T} }}\)is called a centered normal random vector if there exists a deterministic \({\displaystyle k\times \ell }\) matrix \({\displaystyle {\boldsymbol {A}}}\) such that \({\displaystyle {\boldsymbol {A}}\mathbf {Z} }\) has the same distribution as \({\displaystyle \mathbf {X} }\) where \({\displaystyle \mathbf {Z} }\) is a standard normal random vector with \({\displaystyle \ell }\) components
有定理
\[{\displaystyle \mathbf {X} \ \sim \ {\mathcal {N}}(\mathbf {\mu } ,{\boldsymbol {\Sigma }})\quad \iff \quad {\text{there exist }}\mathbf {\mu } \in \mathbb {R} ^{k},{\boldsymbol {A}}\in \mathbb {R} ^{k\times \ell }{\text{ such that }}\mathbf {X} ={\boldsymbol {A}}\mathbf {Z} +\mathbf {\mu } {\text{ for }}Z_{n}\sim \ {\mathcal {N}}(0,1),n=1,...,k,{\text{i.i.d.}}}\]
且协方差矩阵\({\displaystyle {\boldsymbol {\Sigma }}={\boldsymbol {A}}{\boldsymbol {A}}^{\mathrm {T} }}\)
性质1:
\(\begin{array}{l}{\text { Theorem 1. Let } X \sim \mathcal{N}(\mu, \Sigma) \text { for some } \mu \in \mathbf{R}^{n} \text { and } \Sigma \in \mathbf{S}_{++}^{n} . \text { Then, there exists a matrix}} \\ {B \in \mathbf{R}^{n \times n} \text { such that if we define } Z=B^{-1}(X-\mu), \text { then } Z \sim \mathcal{N}(0, I)}\end{array}\)
性质2:
\({\displaystyle D_{\text{KL}}({\mathcal {N}}_{0}\|{\mathcal {N}}_{1})={1 \over 2}\left\{\operatorname {tr} \left({\boldsymbol {\Sigma }}_{1}^{-1}{\boldsymbol {\Sigma }}_{0}\right)+\left({\boldsymbol {\mu }}_{1}-{\boldsymbol {\mu }}_{0}\right)^{\rm {T}}{\boldsymbol {\Sigma }}_{1}^{-1}({\boldsymbol {\mu }}_{1}-{\boldsymbol {\mu }}_{0})-k+\ln {|{\boldsymbol {\Sigma }}_{1}| \over |{\boldsymbol {\Sigma }}_{0}|}\right\}}\)
原文:https://www.cnblogs.com/cuhm/p/10558989.html