https://codeforces.com/contest/1117/problem/D
题意
有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组成n颗宝石有多少种方法
题解
\[ \left[ \begin{matrix} f[i-1] & f[i-2] & \cdots & f[i-m] \\end{matrix} \right] * \left[ \begin{matrix} 1 & 1 &0 & \cdots & 0 \ 0 & 0 &1 & \cdots & 0 \ \vdots & \vdots &\vdots &\ddots & \vdots \ 0 & 0 &0 &\cdots & 1 \ 1 & 0 &0 &\cdots & 0 \\end{matrix} \right] = \left[ \begin{matrix} f[i] & f[i-1] & \cdots & f[i-m+1] \\end{matrix} \right] \]
代码(矩阵快速幂板子)
#include<bits/stdc++.h>
#define P 1000000007
#define ll long long
#define M 105
using namespace std;
struct N{
ll a[M][M];
};
ll m,n,i,j;
N mul(N x,N y){
N z;
memset(z.a,0,sizeof(z.a));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++){
z.a[i][j]+=x.a[i][k]*y.a[k][j]%P;
z.a[i][j]%=P;
}
return z;
}
N pw(N bs,ll x){
N y;
memset(y.a,0,sizeof(y.a));
for(int i=1;i<=n;i++)y.a[i][i]=1;
while(x){
if(x&1)y=mul(y,bs);
bs=mul(bs,bs);
x>>=1;
}
return y;
}
int main(){
cin>>m>>n;
N f;memset(f.a,0,sizeof(f.a));
f.a[1][1]=1;f.a[n][1]=1;
for(i=1,j=2;j<=n;j++,i++)f.a[i][j]=1;
f=pw(f,m);
cout<<f.a[1][1]%P;
}
Educational Codeforces Round 60 D dp + 矩阵快速幂
原文:https://www.cnblogs.com/VIrtu0s0/p/10502926.html