题目链接
首先是可以\(O(n^2)\)枚举出所有符合要求的点对的,然后考虑建图。
还是拆点把每个点拆成入点和出点,源点连入点,出点连汇点,流量都是1,费用都是0。
然后对于没对符合要求的\((x,y)\),连接\((x_{in},y_{out}),(y_{in},x_{out})\),费用均为\(x+y\),流量均为\(1\)。
然后跑出最大费用最大流,最大流除以2就是第一问,最大费用除以2就是第二问。
为什么要双向连边然后答案除以2?单向连边去试试就知道了
PS:会重复。
#include <cstdio>
#include <queue>
#include <cmath>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 5010;
const int MAXM = 200010;
queue <int> q;
int s, t, now, n, m;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, dis[MAXN], vis[MAXN], Flow[MAXN], pre[MAXN];
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
}
int RoadsExist(){
q.push(s);
memset(dis, 127, sizeof dis);
dis[s] = 0; Flow[s] = INF; pre[t] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i;
Flow[e[i].to] = min(Flow[now], e[i].rest);
if(!vis[e[i].to]){
vis[e[i].to] = 1;
q.push(e[i].to);
}
}
}
return pre[t];
}
int a, b, c, d, maxflow, mincost;
int gcd(int a, int b){
return b ? gcd(b, a % b) : a;
}
int main(){
scanf("%d%d", &a, &b); s = 4999; t = 5000;
for(int i = a; i <= b; ++i){
Add(s, i, 1, 0);
Add(i + 1000, t, 1, 0);
for(int j = a; j < i; ++j){
c = i * i - j * j;
d = sqrt(c);
if(d * d == c && gcd(d, j) == 1){
Add(i, j + 1000, 1, -i - j);
Add(j, i + 1000, 1, -i - j);
}
}
}
while(RoadsExist()){
maxflow += Flow[t];
mincost += Flow[t] * dis[t];
for(int i = t; i != s; i = e[pre[i]].from){
e[pre[i]].rest -= Flow[t];
e[pre[i] ^ 1].rest += Flow[t];
}
}
printf("%d %d\n", maxflow >> 1, -mincost >> 1);
return 0;
}
原文:https://www.cnblogs.com/Qihoo360/p/10500109.html