题目:设$a,b,c\geq 0$, $ab+bc+ca=1$, 求证:$a\sqrt{1+a^2}+b\sqrt{1+b^2}+c\sqrt{1+c^2}\geq 2.$
证明:作代换$a=\sqrt{\frac{yz}{(x+y+z)x}}$, $b=\sqrt{\frac{zx}{(x+y+z)y}}$, $c=\sqrt{\frac{xy}{(x+y+z)z}}$, 则原不等式可化为
$\sum{\frac{\sqrt{yz (x+y)(x+z)}}{x(x+y+z)}}\geq 2.$
即
$\sum{\frac{\sqrt{yz (x+y)(x+z)}}{x}}\geq 2(x+y+z).$ (1)
由柯西不等式及AM-GM不等式可得:
$\sum{\frac{\sqrt{yz (x+y)(x+z)}}{x}}\geq \sum{\frac{\sqrt{yz (\sqrt{xy}+\sqrt{xz})^2}}{x}}=\sum{\left(y\sqrt{\frac{z}{x}}+z\sqrt{\frac{y}{x}}\right)}=\sum{x\left(\sqrt{\frac{y}{z}}+\sqrt{\frac{z}{y}}\right)}\geq 2(x+y+z).$
所以不等式(1)成立,故原不等式获证.
原文:https://www.cnblogs.com/ydwu/p/10500089.html