首页 > 其他 > 详细

sklearn countvectorizer坑

时间:2019-02-26 15:13:16      阅读:285      评论:0      收藏:0      [点我收藏+]

但是如果修改为
[‘驴 福 记 ( 阜通 店 )‘,‘...‘,...]
执行vectorizer.fit_transform就正常。
原因是,创建CountVectorizer实例时,有一个默认参数analyzer=‘word‘,在该参数作用下,词频矩阵构建过程会默认过滤所有的单字token,所以上面的‘驴 福 记 ( 阜 通 店 )‘以空格分隔以后全是单字,也就全被过滤了,所以就empty vocabulary了。

如果想针对单字进行tfidf计算,可以加上参数vectorizer = CountVectorizer(analyzer=‘char‘),此时,输入字符串无需做空格分隔, CountVectorizer会自动按照 单字 进行分隔统计词频。

要想同时支持 字+词 的tfidf计算,需自定义token正则:
vectorizer = CountVectorizer(analyzer=‘word‘,token_pattern=u"(?u)\\b\\w+\\b")
---------------------
作者:Gandalf_lee
来源:CSDN
原文:https://blog.csdn.net/u010967382/article/details/79728404
版权声明:本文为博主原创文章,转载请附上博文链接!

sklearn countvectorizer坑

原文:https://www.cnblogs.com/yjybupt/p/10437442.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!