省选前准备把多项式搞完。(似乎够折磨人的)
首先FFT和NTT板子请出门右转:还是我的博客
0.加减乘
加减有人用我说吗。
乘就是FFT。
1.多项式求逆
对于一个\(n - 1\)次多项式\(A(x)\),求另一个多项式\(B(x)\),满足\(A(x) * B(x) \equiv 1 \ \ (mod \ \ x ^n)\)。(这里的取模表示只保留小于\(n\)的项的系数)
做法就叫倍增吧。
假设已经求得\(B(x)\),满足\(A(x) * B(x) \equiv 1 \ \ (mod \ \ x ^{\lceil \frac{n}{2} \rceil})\)(我也不知道为啥上取整),要求\(C(x)\)满足\(A(x) * C(x) \equiv 1 \ \ (mod \ \ x ^n)\)。
首先可以有\(C(x) \equiv B(x) \ \ (mod \ \ x ^ {\lceil \frac{n}{2} \rceil})\)。
然后移项平方得\((B - C) ^ 2 \equiv 0 \ \ (mod \ \ x ^ n)\)。这个觉得挺显然的,因为上面的多项式可以看成最高次项为\(\lceil \frac{n}{2} \rceil - 1\)的一个多项式,只不过系数都是0。然后平方就搞出了一个\(n\)次多项式,系数自然也是0。
接着拆开,两边同乘以A得:\(AB ^ 2 - 2B + C = 0\)。
于是\(C = B *(2 - AB)\)。
到此为止就做完了。
因为想求\(n\)意义下的就必须先求\(mod \ \ \lceil \frac{n}{2} \rceil\),所以采用递归求解。递归边界就是只有一项,那么\(B(0) = A(0) ^ {mod - 2}\)。
其中的乘法用NTT解决。
时间复杂度:\(T(n) = T(\frac{n}{2}) + O(nlogn) = O(nlogn)\)……不会证。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(‘ ‘)
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const ll mod = 998244353;
const ll G = 3;
const int maxn = 2e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ‘ ‘;
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - ‘0‘, ch = getchar();
if(last == ‘-‘) ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar(‘-‘);
if(x >= 10) write(x / 10);
putchar(x % 10 + ‘0‘);
}
int n;
int rev[maxn];
ll a[maxn], b[maxn], c[maxn];
In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
In void ntt(ll* a, int len, int flg)
{
for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int i = 1; i < len; i <<= 1)
{
ll gn = quickpow(G, (mod - 1) / (i << 1));
for(int j = 0; j < len; j += (i << 1))
{
ll tp1, tp2, g = 1;
for(int k = 0; k < i; ++k, g = g * gn % mod)
{
tp1 = a[j + k], tp2 = g * a[j + k + i] % mod;
a[j + k] = (tp1 + tp2) % mod, a[j + k + i] = (tp1 - tp2 + mod) % mod;
}
}
}
if(flg == 1) return;
int inv = quickpow(len, mod - 2); reverse(a + 1, a + len);
for(int i = 0; i < len; ++i) a[i] = a[i] * inv % mod;
}
In void solve(int deg, ll* a, ll* b) //最后的答案储存在B中,而不是C,这里的C只是充当了一个临时数组
{
if(deg == 1) {b[0] = quickpow(a[0], mod - 2); return;}
solve((deg + 1) >> 1, a, b);
int lim = 0, len = 1;
while(len < (deg << 1)) len <<= 1, ++lim;
for(int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
for(int i = 0; i < deg; ++i) c[i] = a[i];
for(int i = deg; i < len; ++i) c[i] = 0;
ntt(c, len, 1), ntt(b, len, 1);
for(int i = 0; i < len; ++i) b[i] = (2 * 1LL - c[i] * b[i] % mod + mod) % mod * b[i] % mod;
ntt(b, len, -1);
for(int i = deg; i < len; ++i) b[i] = 0;
}
int main()
{
n = read();
for(int i = 0; i < n; ++i) a[i] = read();
solve(n, a, b);
for(int i = 0; i < n; ++i) write(b[i]), space; enter;
return 0;
}
2.多项式开根
对于\(A(x)\),找一个多项式\(B(x)\)满足\(B ^ 2 (x) \equiv A(x) \ \ (mod \ \ n)\)。
做法和上面很像。
首先有\((B ^ 2 - A) ^ 2 \equiv 0 \ \ (mod \ \ n)\)
然后用初中知识得:\((B ^ 2 + A) ^ 2 \equiv 4AB ^ 2 \ \ (mod \ \ n)\)
移项得\(A = (\frac{B ^ 2 + A}{2B})\)
把\(A\)换成\(C ^ 2\)就完事了:\(C = \frac{B ^ 2 + A}{2B}\)
这个除法就用刚学的多项式求逆就好啦。
复杂度还是\(O(nlogn)\)的,因为上面说了,每一层求逆元是\(O(nlogn)\)的。
“递归套递归,复杂度不变”(带劲)
原文:https://www.cnblogs.com/mrclr/p/10367006.html