Given n, how many structurally unique BST‘s (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST‘s:
1 3 3 2 1
\ / / / \ 3 2 1 1 3 2
/ / \ 2 1 2 3
Approach #1: DP. [C++]
class Solution {
public:
int numTrees(int n) {
vector<int> nums(n+1);
nums[0] = 1;
nums[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 0; j <= i-1; ++j) {
nums[i] += nums[j] * nums[i-1-j];
}
}
return nums[n];
}
};
Analysis:
status: nums[n] represent that there have n nodes the result of BST‘s number.
init: nums[1] = 1, nums[0] = 1;
function: ∑(nums[j] * nums[i-1-j]);
result: nums[n]
96. Unique Binary Search Trees
原文:https://www.cnblogs.com/ruruozhenhao/p/10363248.html