首页 > 其他 > 详细

B. Yet Another Array Partitioning Task ——cf

时间:2019-02-11 15:37:37      阅读:399      评论:0      收藏:0      [点我收藏+]
B. Yet Another Array Partitioning Task
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

An array bb is called to be a subarray of aa if it forms a continuous subsequence of aa , that is, if it is equal to alal , al+1al+1 , … , arar for some l,rl,r .

Suppose mm is some known constant. For any array, having mm or more elements, let‘s define it‘s beauty as the sum of mm largest elements of that array. For example:

  • For array x=[4,3,1,5,2]x=[4,3,1,5,2] and m=3m=3 , the 33 largest elements of xx are 55 , 44 and 33 , so the beauty of xx is 5+4+3=125+4+3=12 .
  • For array x=[10,10,10]x=[10,10,10] and m=2m=2 , the beauty of xx is 10+10=2010+10=20 .

You are given an array a1,a2,,ana1,a2,…,an , the value of the said constant mm and an integer kk . Your need to split the array aa into exactly kk subarrays such that:

  • Each element from aa belongs to exactly one subarray.
  • Each subarray has at least mm elements.
  • The sum of all beauties of kk subarrays is maximum possible.
Input

The first line contains three integers nn , mm and kk (2n2?1052≤n≤2?105 , 1m1≤m , 2k2≤k , m?knm?k≤n ) — the number of elements in aa , the constant mm in the definition of beauty and the number of subarrays to split to.

The second line contains nn integers a1,a2,,ana1,a2,…,an (?109ai109?109≤ai≤109 ).

Output

In the first line, print the maximum possible sum of the beauties of the subarrays in the optimal partition.

In the second line, print k?1k?1 integers p1,p2,,pk?1p1,p2,…,pk?1 (1p1<p2<<pk?1<n1≤p1<p2<…<pk?1<n ) representing the partition of the array, in which:

  • All elements with indices from 11 to p1p1 belong to the first subarray.
  • All elements with indices from p1+1p1+1 to p2p2 belong to the second subarray.
  • … .
  • All elements with indices from pk?1+1pk?1+1 to nn belong to the last, kk -th subarray.

If there are several optimal partitions, print any of them.

Examples
Input
Copy
9 2 3
5 2 5 2 4 1 1 3 2
Output
Copy
21
3 5 
Input
Copy
6 1 4
4 1 3 2 2 3
Output
Copy
12
1 3 5 
Input
Copy
2 1 2
-1000000000 1000000000
Output
Copy
0
1 
Note

In the first example, one of the optimal partitions is [5,2,5][5,2,5] , [2,4][2,4] , [1,1,3,2][1,1,3,2] .

  • The beauty of the subarray [5,2,5][5,2,5] is 5+5=105+5=10 .
  • The beauty of the subarray [2,4][2,4] is 2+4=62+4=6 .
  • The beauty of the subarray [1,1,3,2][1,1,3,2] is 3+2=53+2=5 .

The sum of their beauties is 10+6+5=2110+6+5=21 .

In the second example, one optimal partition is [4][4] , [1,3][1,3] , [2,2][2,2] , [3][3] .

 

 

大意:
这个题目是给你n个数据,让你分成k段,每一段至少m个数,并且把每一段的前m大的数求和
输出求和的结果,和分段的位置、
思路:
是求这每一段的前m大的数,其实可以转化成,求这一组数前m*k大的数之和。
至于求分段的位置,这个就有点麻烦了,可以把每一个位置初始标记为0,
然后在求sum的同时,将求过的数位置标记成1,之后求分段位置的时候,
就可以进行累加,一旦累加之和为m,说明这m个数组成了一段,也就是在这个位置将数组分段。

 

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=2e5+10;
struct node
{
    int x,id;
}a[maxn];
bool vis[maxn];
bool cmp(node a,node b)
{
    return a.x>b.x;
}
int main()
{
    int n,m,k;
    memset(vis,0,sizeof(vis));
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i].x);
        a[i].id=i;
    }
    sort(a+1,a+1+n,cmp);
    ll sum=0;
    for(int i=1;i<=m*k;i++)
    {
        sum+=a[i].x;
        vis[a[i].id]=1;
        //printf("a.id=%d\n",a[i])
    }
    printf("%I64d\n",sum);
    int s=0;;
    for(int i=1;i<=n;i++)
    {
        s=s+vis[i];
      //  printf("%d %d\n",i,s);
        if(s==m&&k!=1)
        {
        	k--;
        	s=0;
            printf("%d ",i);
        }
    }
    printf("\n");
    return 0;
}

  

B. Yet Another Array Partitioning Task ——cf

原文:https://www.cnblogs.com/EchoZQN/p/10361960.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!