教程部分 |
- |
- |
Deep Learning with PyTorch: A 60 Minute Blitz |
@bat67 |
100% |
What is PyTorch? |
@bat67 |
100% |
Autograd: Automatic Differentiation |
@bat67 |
100% |
Neural Networks |
@bat67 |
100% |
Training a Classifier |
@bat67 |
100% |
Optional: Data Parallelism |
@bat67 |
100% |
Data Loading and Processing Tutorial |
@yportne13 |
100% |
Learning PyTorch with Examples |
@bat67 |
100% |
Transfer Learning Tutorial |
@jiangzhonglian |
100% |
Deploying a Seq2Seq Model with the Hybrid Frontend |
@cangyunye |
100% |
Saving and Loading Models |
@sfyumi |
|
What is <cite>torch.nn</cite> really? |
@lhc741 |
|
Finetuning Torchvision Models |
@ZHHAYO |
100% |
Spatial Transformer Networks Tutorial |
@PEGASUS1993 |
100% |
Neural Transfer Using PyTorch |
@bdqfork |
100% |
Adversarial Example Generation |
@cangyunye |
100% |
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX |
@PEGASUS1993 |
100% |
Chatbot Tutorial |
@a625687551 |
100% |
Generating Names with a Character-Level RNN |
@hhxx2015 |
100% |
Classifying Names with a Character-Level RNN |
@hhxx2015 |
100% |
Deep Learning for NLP with Pytorch |
@BreezeHavana |
|
Introduction to PyTorch |
@guobaoyo |
100% |
Deep Learning with PyTorch |
@bdqfork |
100% |
Word Embeddings: Encoding Lexical Semantics |
@sight007 |
|
Sequence Models and Long-Short Term Memory Networks |
@ETCartman |
100% |
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF |
@JohnJiangLA |
|
Translation with a Sequence to Sequence Network and Attention |
@mengfu188 |
100% |
DCGAN Tutorial |
@wangshuai9517 |
|
Reinforcement Learning (DQN) Tutorial |
@BreezeHavana |
|
Creating Extensions Using numpy and scipy |
|
|
Custom C++ and CUDA Extensions |
@Lotayou |
|
Extending TorchScript with Custom C++ Operators |
|
|
Writing Distributed Applications with PyTorch |
@firdameng |
|
PyTorch 1.0 Distributed Trainer with Amazon AWS |
@yportne13 |
100% |
ONNX Live Tutorial |
@PEGASUS1993 |
100% |
Loading a PyTorch Model in C++ |
@talengu |
100% |
Using the PyTorch C++ Frontend |
@solerji |
100% |
文档部分 |
- |
- |
Autograd mechanics |
@PEGASUS1993 |
100% |
Broadcasting semantics |
@PEGASUS1993 |
100% |
CUDA semantics |
@jiangzhonglian |
100% |
Extending PyTorch |
@PEGASUS1993 |
|
Frequently Asked Questions |
@PEGASUS1993 |
|
Multiprocessing best practices |
@cvley |
|
Reproducibility |
@WyattHuang1 |
|
Serialization semantics |
|
|
Windows FAQ |
@PEGASUS1993 |
|
torch |
|
|
torch.Tensor |
@hijkzzz |
100% |
Tensor Attributes |
|
|
Type Info |
@PEGASUS1993 |
100% |
torch.sparse |
|
|
torch.cuda |
@bdqfork |
100% |
torch.Storage |
|
|
torch.nn |
|
|
torch.nn.functional |
@hijkzzz |
|
torch.nn.init |
@GeneZC |
|
torch.optim |
@qiaokuoyuan |
|
Automatic differentiation package - torch.autograd |
|
|
Distributed communication package - torch.distributed |
|
|
Probability distributions - torch.distributions |
|
|
Torch Script |
|
|
Multiprocessing package - torch.multiprocessing |
@hijkzzz |
100% |
torch.utils.bottleneck |
|
|
torch.utils.checkpoint |
|
|
torch.utils.cpp_extension |
|
|
torch.utils.data |
|
|
torch.utils.dlpack |
|
|
torch.hub |
|
|
torch.utils.model_zoo |
|
|
torch.onnx |
@guobaoyo |
100% |
Distributed communication package (deprecated) - torch.distributed.deprecated |
|
|
torchvision Reference |
|
|
torchvision.datasets |
|
|
torchvision.models |
|
|
torchvision.transforms |
|
|
torchvision.utils |
|
|