地址 : https://leetcode.com/problems/edit-distance/description/

dp[i][j]用来表示word1的0~i-1、word2的0~j-1的最小编辑距离dp[i][0] = i、dp[0][j] = j,代表从 "" 变为 dp[0~i-1] 或 dp[0][0~j-1] 所需要的次数同时对于两个字符串的子串,都能分为最后一个字符相等或者不等的情况:
word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]word1[i-1] != word2[j-1]:
dp[i][j] = dp[i][j-1] + 1dp[i][j] = dp[i-1][j] + 1dp[i][j] = dp[i-1][j-1] + 1 public int minDistance(String word1, String word2) {
int n = word1.length();
int m = word2.length();
int[][] dp = new int[n + 1][m + 1];
for (int i = 0; i < m + 1; i++) {
dp[0][i] = i;
}
for (int i = 0; i < n + 1; i++) {
dp[i][0] = i;
}
for (int i = 1; i < n + 1; i++) {
for (int j = 1; j < m + 1; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}Java解决LeetCode72题 Edit Distance
原文:https://www.cnblogs.com/morethink/p/10356430.html