首页 > 编程语言 > 详细

python之进程

时间:2019-01-13 11:30:05      阅读:38      评论:0      收藏:0      [点我收藏+]

标签:效率   遇到   存在   pid   recv   继续   大小限制   表格   什么是   

进程

本节目录

一 背景知识

  顾名思义,进程即正在执行的一个过程。进程是对正在运行程序的一个抽象。

  进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一。操作系统的其他所有内容都是围绕进程的概念展开的。

  所以想要真正了解进程,必须事先了解操作系统,点击进入    

  PS:即使可以利用的cpu只有一个(早期的计算机确实如此),也能保证支持(伪)并发的能力。将一个单独的cpu变成多个虚拟的cpu(多道技术:时间多路复用和空间多路复用+硬件上支持隔离),没有进程的抽象,现代计算机将不复存在。

  必备的理论基础:

技术分享图片
#一 操作系统的作用:
    1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口
    2:管理、调度进程,并且将多个进程对硬件的竞争变得有序

#二 多道技术:
    1.产生背景:针对单核,实现并发
    ps:
    现在的主机一般是多核,那么每个核都会利用多道技术
    有4个cpu,运行于cpu1的某个程序遇到io阻塞,会等到io结束再重新调度,会被调度到4个
    cpu中的任意一个,具体由操作系统调度算法决定。
    
    2.空间上的复用:如内存中同时有多道程序
    3.时间上的复用:复用一个cpu的时间片
       强调:遇到io切,占用cpu时间过长也切,核心在于切之前将进程的状态保存下来,这样
            才能保证下次切换回来时,能基于上次切走的位置继续运行
技术分享图片

 

二 什么是进程

  进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。我们自己在python文件中写了一些代码,这叫做程序,运行这个python文件的时候,这叫做进程。

  狭义定义:进程是正在运行的程序的实例(an instance of a computer program that is being executed)。
  广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。
  举例: 比如py1文件中有个变量a=1,py2文件中有个变量a=2,他们两个会冲突吗?不会的,是不是,因为两个文件运行起来后是两个进程,操作系统让他们在内存上隔离开,对吧。
  
技术分享图片 进程的概念
 
技术分享图片 进程的特征

 

技术分享图片 进程与程序中的区别

 

注意:同一个程序执行两次,就会在操作系统中出现两个进程,所以我们可以同时运行一个软件,分别做不同的事情也不会混乱。比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,一个可以播放饭岛爱。

 技术分享图片

 

三 进程调度

要想多个进程交替运行,操作系统必须对这些进程进行调度,这个调度也不是随即进行的,而是需要遵循一定的法则,由此就有了进程的调度算法。

技术分享图片 先来先服务调度算法

 

技术分享图片 短作业优先调度算法

 

技术分享图片 时间片轮转法

 

技术分享图片 多级反馈队列

  对于多级反馈队列,windows不太清楚,但是在linux里面可以设置某个进程的优先级,提高了有限级有可能就会多执行几个时间片。

 

四 并发与并行

通过进程之间的调度,也就是进程之间的切换,我们用户感知到的好像是两个视频文件同时在播放,或者音乐和游戏同时在进行,那就让我们来看一下什么叫做并发和并行

无论是并行还是并发,在用户看来都是‘同时‘运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务

  并发:是伪并行,即看起来是同时运行。单个cpu+多道技术就可以实现并发,(并行也属于并发)

技术分享图片 单cpu,多进程并发举例

 

  并行:并行:同时运行,只有具备多个cpu才能实现并行

技术分享图片 多个cpu、多进程并行举例

 

  单核下,可以利用多道技术,多个核,每个核也都可以利用多道技术(多道技术是针对单核而言的

  有四个核,六个任务,这样同一时间有四个任务被执行,假设分别被分配给了cpu1,cpu2,cpu3,cpu4,

  一旦任务1遇到I/O就被迫中断执行,此时任务5就拿到cpu1的时间片去执行,这就是单核下的多道技术

  而一旦任务1的I/O结束了,操作系统会重新调用它(需知进程的调度、分配给哪个cpu运行,由操作系统说了算),可能被分配给四个cpu中的任意一个去执行

技术分享图片

  所有现代计算机经常会在同一时间做很多件事,一个用户的PC(无论是单cpu还是多cpu),都可以同时运行多个任务(一个任务可以理解为一个进程)。

    启动一个进程来杀毒(360软件)

    启动一个进程来看电影(暴风影音)

    启动一个进程来聊天(腾讯QQ)

  所有的这些进程都需被管理,于是一个支持多进程的多道程序系统是至关重要的

  多道技术概念回顾:内存中同时存入多道(多个)程序,cpu从一个进程快速切换到另外一个,使每个进程各自运行几十或几百毫秒,这样,虽然在某一个瞬间,一个cpu只能执行一个任务,但在1秒内,cpu却可以运行多个进程,这就给人产生了并行的错觉,即伪并行,以此来区分多处理器操作系统的真正硬件并行(多个cpu共享同一个物理内存)

 

五 同步\异步\阻塞\非阻塞(重点)

1.进程状态介绍

技术分享图片

  在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。

  (1)就绪(Ready)状态

    当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。

  (2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。

  (3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。

    事件请求:input、sleep、文件输入输出、recv、accept等

    事件发生:sleep、input等完成了

    时间片到了之后有回到就绪状态,这三个状态不断的在转换。

技术分享图片

 

2.同步异步

    所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列。要么成功都成功,失败都失败,两个任务的状态可以保持一致。其实就是一个程序结束才执行另外一个程序,串行的,不一定两个程序就有依赖关系。

    所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列

技术分享图片 同步异步举例

 

3.阻塞与非阻塞

   阻塞和非阻塞这两个概念与程序(线程)等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的

继续上面的那个例子,不论是排队还是使用号码等待通知,如果在这个等待的过程中,等待者除了等待消息通知之外不能做其它的事情,那么该机制就是阻塞的,表现在程序中,也就是该程序一直阻塞在该函数调用处不能继续往下执行。
相反,有的人喜欢在等待取餐的时候一边打游戏一边等待,这样的状态就是非阻塞的,因为他(等待者)没有阻塞在这个消息通知上,而是一边做自己的事情一边等待。阻塞的方法:input、time.sleep,socket中的recv、accept等等。

 

 4.同步/异步 与 阻塞和非阻塞

  1. 同步阻塞形式

    效率最低。拿上面的例子来说,就是你专心排队,什么别的事都不做。

  1. 异步阻塞形式

    如果在排队取餐的人采用的是异步的方式去等待消息被触发(通知),也就是领了一张小纸条,假如在这段时间里他不能做其它的事情,就在那坐着等着,不能玩游戏等,那么很显然,这个人被阻塞在了这个等待的操作上面;

    异步操作是可以被阻塞住的,只不过它不是在处理消息时阻塞,而是在等待消息通知时被阻塞。

  1. 同步非阻塞形式

    实际上是效率低下的。

    想象一下你一边打着电话一边还需要抬头看到底队伍排到你了没有,如果把打电话和观察排队的位置看成是程序的两个操作的话,这个程序需要在这两种不同的行为之间来回的切换,效率可想而知是低下的。

  1. 异步非阻塞形式

    效率更高,

    因为打电话是你(等待者)的事情,而通知你则是柜台(消息触发机制)的事情,程序没有在两种不同的操作中来回切换

    比如说,这个人突然发觉自己烟瘾犯了,需要出去抽根烟,于是他告诉点餐员说,排到我这个号码的时候麻烦到外面通知我一下,那么他就没有被阻塞在这个等待的操作上面,自然这个就是异步+非阻塞的方式了。

  很多人会把同步和阻塞混淆,是因为很多时候同步操作会以阻塞的形式表现出来,同样的,很多人也会把异步和非阻塞混淆,因为异步操作一般都不会在真正的IO操作处被阻塞

 

六 进程的创建、结束与并发的实现(了解)

1.进程的创建

    但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。

    而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程

      1. 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)

      2. 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)

      3. 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)

      4. 一个批处理作业的初始化(只在大型机的批处理系统中应用)

  

    无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的:

      1. 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)

      2. 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。

 

    关于创建的子进程,UNIX和windows

      1.相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。

      2.不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。

 

2.进程的结束 

    1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)

    2. 出错退出(自愿,python a.py中a.py不存在)

    3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)

    4. 被其他进程杀死(非自愿,如kill -9)

 3.进程并发的实现(了解)

    进程并发的实现在于,硬件中断一个正在运行的进程,把此时进程运行的所有状态保存下来,为此,操作系统维护一张表格,即进程表(process table),每个进程占用一个进程表项(这些表项也称为进程控制块)

    技术分享图片

    该表存放了进程状态的重要信息:程序计数器、堆栈指针、内存分配状况、所有打开文件的状态、帐号和调度信息,以及其他在进程由运行态转为就绪态或阻塞态时,必须保存的信息,从而保证该进程在再次启动时,就像从未被中断过一样。

 

===========================================================

 上面的内容都是进程的一些理论基础,下面的内容是python中进程的应用实战

=====================================================================

今天的内容就到这个地方吧,同学们好好整理一下~~~~~~~~~~~~~~~~

  通过上面内容的学习,我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程。所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。多个进程可以实现并发效果,也就是说,当我们的程序中存在多个进程的时候,在某些时候,就会让程序的执行速度变快。以我们之前所学的知识,并不能实现创建进程这个功能,所以我们就需要借助python中强大的模块。

七 multiprocess模块

仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。重点强调:进程没有任何共享状态,进程修改的数据,改动仅限于该进程内,但是通过一些特殊的方法,可以实现进程之间数据的共享。

1.process模块介绍

   process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。

Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

    我们先写一个程序来看看:

技术分享图片
#当前文件名称为test.py
# from multiprocessing import Process # # def func(): # print(12345) # # if __name__ == ‘__main__‘: #windows 下才需要写这个,这和系统创建进程的机制有关系,不用深究,记着windows下要写就好啦 # #首先我运行当前这个test.py文件,运行这个文件的程序,那么就产生了进程,这个进程我们称为主进程 # # p = Process(target=func,) #将函数注册到一个进程中,p是一个进程对象,此时还没有启动进程,只是创建了一个进程对象。并且func是不加括号的,因为加上括号这个函数就直接运行了对吧。 # p.start() #告诉操作系统,给我开启一个进程,func这个函数就被我们新开的这个进程执行了,而这个进程是我主进程运行过程中创建出来的,所以称这个新创建的进程为主进程的子进程,而主进程又可以称为这个新进程的父进程。
          #而这个子进程中执行的程序,相当于将现在这个test.py文件中的程序copy到一个你看不到的python文件中去执行了,就相当于当前这个文件,被另外一个py文件import过去并执行了。
          #start并不是直接就去执行了,我们知道进程有三个状态,进程会进入进程的三个状态,就绪,(被调度,也就是时间片切换到它的时候)执行,阻塞,并且在这个三个状态之间不断的转换,等待cpu执行时间片到了。 # print(‘*‘ * 10) #这是主进程的程序,上面开启的子进程的程序是和主进程的程序同时运行的,我们称为异步
技术分享图片

 

    上面说了,我们通过主进程创建的子进程是异步执行的,那么我们就验证一下,并且看一下子进程和主进程(也就是父进程)的ID号(讲一下pid和ppid,使用pycharm举例),来看看是否是父子关系。

技术分享图片 子进程与主进程

 

    

    打开windows下的任务管理器,看pycharm的pid进程号,是我们上面运行的test.py这个文件主进程的父进程号:

    技术分享图片

 

    看一个问题,说明linux和windows两个不同的操作系统创建进程的不同机制导致的不同结果:  

技术分享图片 看代码

 

 

    一个进程的生命周期:如果子进程的运行时间长,那么等到子进程执行结束程序才结束,如果主进程的执行时间长,那么主进程执行结束程序才结束,实际上我们在子进程中打印的内容是在主进程的执行结果中看不出来的,但是pycharm帮我们做了优化,因为它会识别到你这是开的子进程,帮你把子进程中打印的内容打印到了显示台上。

    如果说一个主进程运行完了之后,我们把pycharm关了,但是子进程还没有执行结束,那么子进程还存在吗?这要看你的进程是如何配置的,如果说我们没有配置说我主进程结束,子进程要跟着结束,那么主进程结束的时候,子进程是不会跟着结束的,他会自己执行完,如果我设定的是主进程结束,子进程必须跟着结束,那么就不会出现单独的子进程(孤儿进程)了,具体如何设置,看下面的守护进程的讲解。比如说,我们将来启动项目的时候,可能通过cmd来启动,那么我cmd关闭了你的项目就会关闭吗,不会的,因为你的项目不能停止对外的服务,对吧。

    Process类中参数的介绍:

参数介绍:
1 group参数未使用,值始终为None
2 target表示调用对象,即子进程要执行的任务
3 args表示调用对象的位置参数元组,args=(1,2,‘egon‘,)
4 kwargs表示调用对象的字典,kwargs={‘name‘:‘egon‘,‘age‘:18}
5 name为子进程的名称

    给要执行的函数传参数:

技术分享图片 函数传参

 

    Process类中各方法的介绍:

技术分享图片
1 p.start():启动进程,并调用该子进程中的p.run() 
2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  
3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4 p.is_alive():如果p仍然运行,返回True
5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程  
技术分享图片

     

    join方法的例子:

    让主进程加上join的地方等待(也就是阻塞住),等待子进程执行完之后,再继续往下执行我的主进程,好多时候,我们主进程需要子进程的执行结果,所以必须要等待。join感觉就像是将子进程和主进程拼接起来一样,将异步改为同步执行。

技术分享图片 join方法的使用

 

  怎么样开启多个进程呢?for循环。并且我有个需求就是说,所有的子进程异步执行,然后所有的子进程全部执行完之后,我再执行主进程,怎么搞?看代码

技术分享图片 代码

 

   

  模拟两个应用场景:1、同时对一个文件进行写操作  2、同时创建多个文件

技术分享图片 应用场景

 

 

  Process类中自带封装的各属性的介绍

技术分享图片
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2 p.name:进程的名称
3 p.pid:进程的pid
4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
技术分享图片

 

2.Process类的使用

  注意:在windows中Process()必须放到# if __name__ == ‘__main__‘:下

技术分享图片 原因解释

     

    进程的创建第二种方法(继承)

技术分享图片 继承的形式创建进程

      

    进程之间的数据是隔离的:

技术分享图片 进程的内存空间是隔离的

 

     练习:我们之前学socket的时候,知道tcp协议的socket是不能同时和多个客户端进行连接的,(这里先不考虑socketserver那个模块),对不对,那我们自己通过多进程来实现一下同时和多个客户端进行连接通信。

     服务端代码示例:(注意一点:通过这个是不能做qq聊天的,因为qq聊天是qq的客户端把信息发给另外一个qq的客户端,中间有一个服务端帮你转发消息,而不是我们这样的单纯的客户端和服务端对话,并且子进程开启之后咱们是没法操作的,并且没有为子进程input输入提供控制台,所有你再在子进程中写上了input会报错,EOFError错误,这个错误的意思就是你的input需要输入,但是你输入不了,就会报这个错误。而子进程的输出打印之类的,是pycharm做了优化,将所有子进程中的输出结果帮你打印出来了,但实质还是不同进程的。)

技术分享图片 tcp_server.py

 

     客户端代码示例:

技术分享图片 tcp_client.py

     

    上面我们通过多进程实现了并发,但是有个问题

技术分享图片 问题

 

     Process对象的其他方法或属性(简单了解一下就可以啦)

技术分享图片 terminate和is_alive

 

技术分享图片 name与pid

 

    僵尸进程与孤儿进程(简单了解 一下就可以啦)

技术分享图片 僵尸进程与孤儿进程

 

 

3.守护进程

    之前我们讲的子进程是不会随着主进程的结束而结束,子进程全部执行完之后,程序才结束,那么如果有一天我们的需求是我的主进程结束了,由我主进程创建的那些子进程必须跟着结束,怎么办?守护进程就来了!

    主进程创建守护进程

      其一:守护进程会在主进程代码执行结束后就终止

      其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

    注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

技术分享图片 守护进程

 

4.进程同步(锁)

     通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题:进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理。

技术分享图片 多进程抢占输出资源,导致打印混乱的示例

 

技术分享图片 加锁:由并发改成了串行,牺牲了运行效率,但避免了竞争

 

    上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。

    接下来,我们以模拟抢票为例,来看看数据安全的重要性。 

技术分享图片 并发运行,效率高,但是竞争同一个文件,导致数据混乱

 

技术分享图片 加锁:购票行为由并发变成了串行,牺牲了效率,但是保证了数据安全

 

     进程锁总结: 

技术分享图片
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理

#因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

IPC通信机制(了解):IPC是intent-Process Communication的缩写,含义为进程间通信或者跨进程通信,是指两个进程之间进行数据交换的过程。IPC不是某个系统所独有的,任何一个操作系统都需要有相应的IPC机制,
比如Windows上可以通过剪贴板、管道和邮槽等来进行进程间通信,而Linux上可以通过命名共享内容、信号量等来进行进程间通信。Android它也有自己的进程间通信方式,Android建构在Linux基础上,继承了一
部分Linux的通信方式。
技术分享图片

 

第二天进程的学习就到这里啦~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5.队列(推荐使用)

    进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的。队列就像一个特殊的列表,但是可以设置固定长度,并且从前面插入数据,从后面取出数据,先进先出。

Queue([maxsize]) 创建共享的进程队列。
参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
底层队列使用管道和锁实现。

    先看下面的代码示例,然后再看方法介绍。

    queue的方法介绍

技术分享图片 方法介绍

 

     queue的其他方法(了解)

技术分享图片 其他方法

 

     我们看一些代码示例:

技术分享图片 队列的简单用法

 

技术分享图片 子进程与父进程通过队列进行通信

 

    接下来看一个稍微复杂一些的例子:

技术分享图片 批量的生产输入放入队列,再批量的获取结果

     队列是进程安全的:同一时间只能一个进程拿到队列中的一个数据,你拿到了一个数据,这个数据别人就拿不到了。

    下面我们来看一个叫做生产者消费者模型的东西:

      在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

    为什么要使用生产者和消费者模式

      在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

    什么是生产者消费者模式

      生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力,并且我可以根据生产速度和消费速度来均衡一下多少个生产者可以为多少个消费者提供足够的服务,就可以开多进程等等,而这些进程都是到阻塞队列或者说是缓冲区中去获取或者添加数据。

    通俗的解释:看图说话。。背景有点乱,等我更新~~

    技术分享图片

 

    那么我们基于队列来实现一个生产者消费者模型,代码示例:

技术分享图片 基于队列的生产者消费者模型

 

技术分享图片 生产者消费者模型总结

 

    通过上面基于队列的生产者消费者代码示例,我们发现一个问题:主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

    解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环

 

技术分享图片 子进程生产者在生产完毕后发送结束信号None

 

   注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

技术分享图片 主进程在生产者生产完毕后发送结束信号None

     但上述解决方式,在有多个生产者和多个消费者时,由于队列我们说了是进程安全的,我一个进程拿走了结束信号,另外一个进程就拿不到了,还需要多发送一个结束信号,有几个取数据的进程就要发送几个结束信号,我们则需要用一个很low的方式去解决

技术分享图片 有多个消费者和生产者的时候需要发送多次结束信号

     其实我们的思路无非是发送结束信号而已,有另外一种队列提供了这种机制

    JoinableQueue([maxsize]) 

技术分享图片
#JoinableQueue([maxsize]):这就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

   #参数介绍:
    maxsize是队列中允许最大项数,省略则无大小限制。    
  #方法介绍:
    JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:
    q.task_done():使用者使用此方法发出信号,表示q.get()的返回项目已经被处理。如果调用此方法的次数大于从队列中删除项目的数量,将引发ValueError异常
    q.join():生产者调用此方法进行阻塞,直到队列中所有的项目均被处理。阻塞将持续到队列中的每个项目均调用q.task_done()方法为止,也就是队列中的数据全部被get拿走了。
技术分享图片

 

技术分享图片 JoinableQueue队列实现生产者消费者模型

 

6.管道(了解)

    进程间通信(IPC)方式二:管道(不推荐使用,了解即可),会导致数据不安全的情况出现,后面我们会说到为什么会带来数据 不安全的问题。

技术分享图片 管道介绍

 

技术分享图片 管道初使用

     技术分享图片

    应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为何在生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。如果忘记执行这些步骤,程序可能在消费者中的recv()操作上挂起(就是阻塞)。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道的相同一端就会能生成EOFError异常。因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。   

技术分享图片 引发EOFError

    主进程将管道的两端都传送给子进程,子进程和主进程共用管道的两种报错情况,都是在recv接收的时候报错的:

    1.主进程和子进程中的管道的相同一端都关闭了,出现EOFError;

    2.如果你管道的一端在主进程和子进程中都关闭了,但是你还用这个关闭的一端去接收消息,那么就会出现OSError;

 

    所以你关闭管道的时候,就容易出现问题,需要将所有只用这个管道的进程中的两端全部关闭才行。当然也可以通过异常捕获(try:except EOFerror)来处理。

    虽然我们在主进程和子进程中都打印了一下conn1一端的对象,发现两个不再同一个地址,但是子进程中的管道和主进程中的管道还是可以通信的,因为管道是同一套,系统能够记录。    

 

    我们的目的就是关闭所有的管道,那么主进程和子进程进行通信的时候,可以给子进程传管道的一端就够了,并且用我们之前学到的,信息发送完之后,再发送一个结束信号None,那么你收到的消息为None的时候直接结束接收或者说结束循环,就不用每次都关闭各个进程中的管道了。

技术分享图片 通过结束信号None来结束程序

 

技术分享图片 通过管道来实现生产者消费者模型

     

   

技术分享图片
关于管道会造成数据不安全问题的官方解释:
    The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection object has send() and recv() methods (among others). Note that data in a pipe may become corrupted if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of course there is no risk of corruption from processes using different ends of the pipe at the same time.
    
由Pipe方法返回的两个连接对象表示管道的两端。每个连接对象都有send和recv方法(除其他之外)。注意,如果两个进程(或线程)试图同时从管道的同一端读取或写入数据,那么管道中的数据可能会损坏。当然,在使用管道的不同端部的过程中不存在损坏风险。
技术分享图片

 

技术分享图片 多个消费者竞争会出现数据不安全的问题的解决方案:加锁

     管道可以用于双工通信,通常利用在客户端/服务端中使用的请求/响应模型,或者远程过程调用,就可以使用管道编写与进程交互的程序,像前面将网络通信的时候,我们使用了一个叫subprocess的模块,里面有个参数是pipe管道,执行系统指令,并通过管道获取结果。

 

7.数据共享(了解)

    展望未来,基于消息传递的并发编程是大势所趋

    即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合

    通过消息队列交换数据。这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中

    进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题,应该尽量避免使用本节所讲的共享数据的方式,以后我们会尝试使用数据库来解决进程之间的数据共享问题。

    进程之间数据共享的模块之一Manager模块:

技术分享图片 Manager模块介绍

   多进程共同去处理共享数据的时候,就和我们多进程同时去操作一个文件中的数据是一样的,不加锁就会出现错误的结果,进程不安全的,所以也需要加锁

技术分享图片 Manager模块使用

 

总结一下,进程之间的通信:队列、管道、数据共享也算

下面要讲的信号量和事件也相当于锁,也是全局的,所有进程都能拿到这些锁的状态,进程之间这些锁啊信号量啊事件啊等等的通信,其实底层还是socekt,只不过是基于文件的socket通信,而不是跟上面的数据共享啊空间共享啊之类的机制,我们之前学的是基于网络的socket通信,还记得socket的两个家族吗,一个文件的一个网络的,所以将来如果说这些锁之类的报错,可能你看到的就是类似于socket的错误,简单知道一下就可以啦~~~

工作中常用的是锁,信号量和事件不常用,但是信号量和事件面试的时候会问到,你能知道就行啦~~~

8.信号量(了解)

技术分享图片 信号量Semaphore介绍

   比如大保健:提前设定好,一个房间只有4个床(计数器现在为4),那么同时只能四个人进来,谁先来的谁先占一个床(acquire,计数器减1),4个床满了之后(计数器为0了),第五个人就要等着,等其中一个人出来(release,计数器加1),他就去占用那个床了。

技术分享图片 信号量使用

 

9.事件(了解)

技术分享图片 事件介绍

 

技术分享图片 事件方法的使用

 

技术分享图片 通过事件来模拟红绿灯示例

 

八 进程池和mutiprocess.Poll

  为什么要有进程池?进程池的概念。

  在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程(空间,变量,文件信息等等的内容)也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,维护一个很大的进程列表的同时,调度的时候,还需要进行切换并且记录每个进程的执行节点,也就是记录上下文(各种变量等等乱七八糟的东西,虽然你看不到,但是操作系统都要做),这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。就看我们上面的一些代码例子,你会发现有些程序是不是执行的时候比较慢才出结果,就是这个原因,那么我们要怎么做呢?

  在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果

multiprocess.Poll模块

   创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务(高级一些的进程池可以根据你的并发量,搞成动态增加或减少进程池中的进程数量的操作),不会开启其他进程,提高操作系统效率,减少空间的占用等。

   概念介绍:

Pool([numprocess  [,initializer [, initargs]]]):创建进程池

 

技术分享图片 参数介绍

 

技术分享图片 主要方法介绍

 

技术分享图片 其他方法(了解)

 

技术分享图片 进程池的简单应用及与进程池的效率对比

 

  有一点,map是异步执行的,并且自带close和join

  一般约定俗成的是进程池中的进程数量为CPU的数量,工作中要看具体情况来考量。

 

  实际应用代码示例:

  同步与异步两种执行方式:

技术分享图片 进程池的同步调用

 

技术分享图片 进程池的异步调用

 

技术分享图片 详解:apply_async和apply

 

 

  进程池版的socket并发聊天代码示例:

技术分享图片 server端:tcp_server.py

 

技术分享图片 client端:tcp_client.py

   

   发现:并发开启多个客户端,服务端同一时间只有4个不同的pid,只能结束一个客户端,另外一个客户端才会进来.

   同时最多和4个人进行聊天,因为进程池中只有4个进程可供调用,那有同学会问,我们这么多人想同时聊天怎么办,又不让用多进程,进程池也不能开太多的进程,那咋整啊,后面我们会学到多线程,到时候大家就知道了,现在你们先这样记住就好啦

 

   然后我们再提一个回调函数

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数,这是进程池特有的,普通进程没有这个机制,但是我们也可以通过进程通信来拿到返回值,进程池的这个回调也是进程通信的机制完成的。

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果

  

技术分享图片 回调函数的简单使用

  回调函数在写的时候注意一点,回调函数的形参执行有一个,如果你的执行函数有多个返回值,那么也可以被回调函数的这一个形参接收,接收的是一个元祖,包含着你执行函数的所有返回值。

  

  使用进程池来搞爬虫的时候,最耗时间的是请求地址的网络请求延迟,那么如果我们在将处理数据的操作加到每个子进程中,那么所有在进程池后面排队的进程就需要等更长的时间才能获取进程池里面的执行进程来执行自己,所以一般我们就将请求作成一个执行函数,通过进程池去异步执行,剩下的数据处理的内容放到另外一个进程或者主进程中去执行,将网络延迟的时间也利用起来,效率更高。

  requests这个模块的get方法请求页面,就和我们在浏览器上输入一个网址然后回车去请求别人的网站的效果是一样的。安装requests模块的指令:在cmd窗口执行pip install requests。

技术分享图片 爬虫相关的requests模块简单使用

 

  

技术分享图片 使用多进程请求多个url来减少网络等待浪费的时间

 

技术分享图片 爬虫示例

 

  如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数

技术分享图片 无需回调函数的示例

 

  进程池和信号量的区别:

  进程池是多个需要被执行的任务在进程池外面排队等待获取进程对象去执行自己,而信号量是一堆进程等待着去执行一段逻辑代码。

  信号量不能控制创建多少个进程,但是可以控制同时多少个进程能够执行,但是进程池能控制你可以创建多少个进程。

  举例:就像那些开大车拉煤的,信号量是什么呢,就好比我只有五个车道,你每次只能过5辆车,但是不影响你创建100辆车,但是进程池相当于什么呢?相当于你只有5辆车,每次5个车拉东西,拉完你再把车放回来,给别的人拉煤用。

  其他语言里面有更高级的进程池,在设置的时候,可以将进程池中的进程动态的创建出来,当需求增大的时候,就会自动在进程池中添加进程,需求小的时候,自动减少进程,并且可以设置进程数量的上线,最多为多,python里面没有。

  进程池的其他实现方式:https://docs.python.org/dev/library/concurrent.futures.html

 

python之进程

标签:效率   遇到   存在   pid   recv   继续   大小限制   表格   什么是   

原文:https://www.cnblogs.com/bpbl/p/10262115.html

(0)
(0)
   
举报
评论 一句话评论(0
0条  
登录后才能评论!
© 2014 bubuko.com 版权所有 鲁ICP备09046678号-4
打开技术之扣,分享程序人生!
             

鲁公网安备 37021202000002号