首页 > 其他 > 详细

特征工程之归一化及标准化

时间:2018-12-24 02:15:14      阅读:235      评论:0      收藏:0      [点我收藏+]

特征的预处理:对数据进行处理

特征处理:通过特定的统计方法(数学方法)将数据转换成算法要求的数据

技术分享图片

 

归一化:

多个特征同等重要的时候需要进行归一化处理
目的:使得某一个特征对最终结果不会造成更大影响

技术分享图片

技术分享图片

技术分享图片

归一化API:

技术分享图片

技术分享图片

技术分享图片

技术分享图片

 

标准化:

技术分享图片

技术分享图片

技术分享图片

技术分享图片

技术分享图片

归一化及标准化实例代码:

# 数据预处理
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler


def mm():
    ‘‘‘
    归一化处理
    :return:None
    ‘‘‘
    # mm = MinMaxScaler()
    mm = MinMaxScaler(feature_range=(2, 3))
    data = mm.fit_transform([[90, 2, 10, 40], [60, 4, 15, 45], [75, 3, 13, 46]])
    print(data)
    return None


def stand():
    ‘‘‘
    标准化缩放
    :return:None
    ‘‘‘
    std = StandardScaler()
    data = std.fit_transform([[1, -1, 3], [2, 4, 2], [4, 6, -1]])
    print(data)
    return None


if __name__ == "__main__":
    mm()
    stand()

运行结果:

技术分享图片

 

特征工程之归一化及标准化

原文:https://www.cnblogs.com/shixinzei/p/10166378.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!