首页 > 其他 > 详细

从组合数说开去

时间:2014-01-16 00:16:38      阅读:373      评论:0      收藏:0      [点我收藏+]

组合数

Cbubuko.com,布布扣rbubuko.com,布布扣nbubuko.com,布布扣=n!bubuko.com,布布扣r!(n?r)!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
是计数的时候引入的,这个数必然是整数,这是显然的。

但表达式n!bubuko.com,布布扣r!(n?r)!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 为什么一定是整数呢?答案却没有那么显然。

n!bubuko.com,布布扣r!(n?r)!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=n(n?1)(n?2)(n?3)..bubuko.com,布布扣.(n?r+1)(n?r)!bubuko.com,布布扣bubuko.com,布布扣r!(n?r)!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=n(n?1)(n?2)(n?3)..bubuko.com,布布扣.(n?r+1)bubuko.com,布布扣bubuko.com,布布扣r!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
由组合的意义知 n?r0bubuko.com,布布扣 ,如果我们令 k=n?rbubuko.com,布布扣 ,那么可以写为

(k+1)(k+2)(k+3)..bubuko.com,布布扣.(k+r)bubuko.com,布布扣bubuko.com,布布扣r!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
,如果我们证明了这个是整数,那么组合数就必然是整数。

 

 

(k+1)(k+2)(k+3)..bubuko.com,布布扣.(k+r)bubuko.com,布布扣bubuko.com,布布扣r!bubuko.com,布布扣bubuko.com,布布扣kbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣
这个式子是整数,用通俗的语言来说:就是

n个连续非负整数的积可以被n的阶乘整除。

在证明之前,我们先看一个定理

定理一:

每个≥2的正整数要么是素数,要么是一些素数的乘积。

这个定理很好证明,可以用最小整数公理,也可以用第二数学归纳法。

 

下面我们证明
(k+1)(k+2)(kbubuko.com,布布扣+3)...(k+r)bubuko.com,布布扣bubuko.com,布布扣r!bubuko.com,布布扣bubuko.com,布布扣kbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣
是整数。

方法是检查素数的个数。

首先定义一个函数 E(n, p)=e, p是任意素数e是满足pbubuko.com,布布扣ebubuko.com,布布扣|n!bubuko.com,布布扣 的最大的整数。

 

易知

E(n,p)=?nbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?+?nbubuko.com,布布扣pbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣+?nbubuko.com,布布扣pbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?+?nbubuko.com,布布扣pbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?+...bubuko.com,布布扣bubuko.com,布布扣

其中 ??bubuko.com,布布扣 表示取整函数。

 

(k+1)(k+2)(k+3)..bubuko.com,布布扣.(k+r)=(k+r)!bubuko.com,布布扣k!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

对任意的素数p

E(k+r,p)?E(k,p)bubuko.com,布布扣=(?k+rbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣???kbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?)bubuko.com,布布扣+(?k+rbubuko.com,布布扣pbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣???kbubuko.com,布布扣pbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?)bubuko.com,布布扣+(?k+rbubuko.com,布布扣pbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣???kbubuko.com,布布扣pbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?)bubuko.com,布布扣+(?k+rbubuko.com,布布扣pbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣???kbubuko.com,布布扣pbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?)+...bubuko.com,布布扣bubuko.com,布布扣
  
?k+rbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?=?kbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣+rbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?kbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?+?rbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?,bubuko.com,布布扣bubuko.com,布布扣

这是因为

?a+b??a?+?b?bubuko.com,布布扣
,其中a,b为任意实数。证明比较容易,略去。

 

 

因此,

E(k+r,p)?E(k,p)?rbubuko.com,布布扣pbubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣+?rbubuko.com,布布扣pbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?+?rbubuko.com,布布扣pbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?+?rbubuko.com,布布扣pbubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?+...bubuko.com,布布扣bubuko.com,布布扣

E(k+r,p)?E(k,p)bubuko.com,布布扣E(r,p)bubuko.com,布布扣bubuko.com,布布扣

也就是说,对任意的素数p(k+r)!bubuko.com,布布扣k!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 中含有的p的个数均 bubuko.com,布布扣  r!中含有的p的个数。又由定理一知r!| (k+r)!bubuko.com,布布扣k!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

也就是说

(k+1)(k+2)(k+3)..bubuko.com,布布扣.(k+r)bubuko.com,布布扣bubuko.com,布布扣r!bubuko.com,布布扣bubuko.com,布布扣kbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣
是整数。

证毕。

 

n个连续非负整数的积可以被n的阶乘整除 应用

 

证明

1bubuko.com,布布扣5bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣5bubuko.com,布布扣+1bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣3bubuko.com,布布扣+7bubuko.com,布布扣15bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣
都是整数。

从组合数说开去

原文:http://www.cnblogs.com/calculus/p/3517053.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!