首页 > 其他 > 详细

具体数学第二版第四章习题(4)

时间:2018-11-12 18:21:30      阅读:192      评论:0      收藏:0      [点我收藏+]

46 (1)假设$j^{‘}j-k^{‘}k=Gcd(j,k)$,那么有$n^{j^{‘}j}=n^{k^{‘}k}n^{Gcd(j,k)}$,所以如果$n^{j^{‘}j}=pm+1,n^{k^{‘}k}=qm+1\rightarrow n^{Gcd(j,k)}=rm+1$

(2)假设$n=pq$并且$p$是$n$的最小素因子(如果$n$为素数那么$p=n$)。所以$2^{p-1}\equiv 1(mod(p))$。如果$2^{n}\equiv 1(mod(n))\rightarrow 2^{n}\equiv 1(mod(p))$。所以根据上面一个小题的结论,$2^{Gcd(p-1,n)}\equiv 1(mod(p))$。而由于$p$是$n$的最小素因子,所以$Gcd(p-1,n)=1$。这会导致错误。所以$2^{n}\not\equiv 1(mod(n))$

具体数学第二版第四章习题(4)

原文:https://www.cnblogs.com/jianglangcaijin/p/9948116.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!