首页 > 其他 > 详细

MT【226】费马点两题

时间:2018-10-15 10:05:38      阅读:171      评论:0      收藏:0      [点我收藏+]

已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____

技术分享图片

提示:费马点最小,取$Z_4(0,\sqrt{3})$为$\Delta Z_1Z_2Z_3$的费马点. 此时$|z_3-z_4|=2\sqrt{3}$
故$|z_1-z_4|+|z_2-z_4|\ge3\sqrt{3}$
注:只有这些很对称特殊的点的费马点可以坐标写出,一般的已知三个点的坐标求费马点的坐标的公式没有.

练习:设$z$为复数,$k$为实数,且$|z+2016|+|z+2017+ki|+|z+2018|$的最小值为$\sqrt{3}+1$则$k=$_____

 

 


提示:费马点,记$A(-2016,0),B(-2017,-k),C(-2018,0)$令$\angle{CZA}=120^{o}$
则$|BZ|=\sqrt{3}+1-\dfrac{2}{\sqrt{3}}*2=|k|-\dfrac{1}{\sqrt{3}}$得,$k=\pm 1$

MT【226】费马点两题

原文:https://www.cnblogs.com/mathstudy/p/9789143.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!