上篇中已经分析了DAGscheduler的监听机制,以及job的划分,这次我们再来看一看stage是如何划分以及stage的最终提交;
当jobsubmit 加入到DAGscheduler的event队列中的时候,
就会将job的stage划分为resultstage 和 shufflestage,其中一个job只会有一个resultstage;
stage的划分上,首先从最后一个stage开始,最先创建一个resultstage,然后依次向前递归实现stage的划分。
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
// Stage划分过程是从最后一个Stage开始往前执行的,最后一个Stage的类型是ResultStage
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
//为该Job生成一个ActiveJob对象,并准备计算这个finalStage
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job // 该job进入active状态
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post( // 向LiveListenerBus发送Job提交事件
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage) //提交当前Stage
submitWaitingStages()
}
在划分中,根据创建的resultstage,去获取result的parentstage进行递归调用;
private def newResultStage( rdd: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], jobId: Int, callSite: CallSite): ResultStage = { // 获取当前Stage的parent Stage,这个方法是划分Stage的核心实现 (递归调用实现) val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId) val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite)// 创建当前最后的ResultStage stageIdToStage(id) = stage // 将ResultStage与stageId相关联 updateJobIdStageIdMaps(jobId, stage) // 更新该job中包含的stage stage }
递归调用的终点,获取parentstage 和 stageid 的结果返回,由于这个是由后向前的递归调用(使用广度优先策略),那么最先执行的stageid 则是最小的0
private def getParentStagesAndId(rdd: RDD[_], firstJobId: Int): (List[Stage], Int) = {
val parentStages = getParentStages(rdd, firstJobId) // 传入rdd和jobId,生成parentStage
// 生成当前stage的stageId。同一Application中Stage初始编号为0
val id = nextStageId.getAndIncrement()
(parentStages, id)
}
private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = { val parents = new HashSet[Stage] // 存储当前stage的所有parent stage val visited = new HashSet[RDD[_]] // 存储访问过的rdd // We are manually maintaining a stack here to prevent StackOverflowError // caused by recursively visiting val waitingForVisit = new Stack[RDD[_]] // 一个栈,保存未访问过的rdd,先进后出 def visit(r: RDD[_]) { if (!visited(r)) { // 如果栈中弹出的rdd被未访问过 visited += r // 首先将其标记为已访问 // Kind of ugly: need to register RDDs with the cache here since // we can‘t do it in its constructor because # of partitions is unknown for (dep <- r.dependencies) { // 读取当然rdd的依赖 dep match { case shufDep: ShuffleDependency[_, _, _] => // 如果是宽依赖,则获取依赖rdd所在的ShuffleMapStage parents += getShuffleMapStage(shufDep, firstJobId) case _ => // 如果是窄依赖,将依赖的rdd也压入栈中,下次循环时会探索该rdd的依赖情况,直到找到款依赖划分新的stage为止 waitingForVisit.push(dep.rdd) } } } } waitingForVisit.push(rdd) // 将当前rdd压入栈中 while (waitingForVisit.nonEmpty) { // 如果栈中有未被访问的rdd visit(waitingForVisit.pop()) // } parents.toList }
参考资料:https://blog.csdn.net/dabokele/article/details/51902617
原文:https://www.cnblogs.com/yankang/p/9771778.html