题意就是:做整数拆分,答案是2^(n-1)
由费马小定理可得:2^n % p = 2^[ n % (p-1) ] % p
当n为超大数时,对其每个数位的数分开来加权计算
当n为整型类型时,用快速幂的方法求解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int Mod = 1e9+7;
char str[100050];
__int64 Pow(__int64 n)
{
__int64 ans = 1, tem = 2;
while(n){
if(n%2 == 1) ans = ans * tem % Mod;
n = n / 2;
tem = tem * tem % Mod;
}
return ans;
}
int main()
{
__int64 n;
while(~scanf("%s", &str))
{
int len = strlen(str);
n = 0;
for(int i = 0; i < len; i ++)
{
n = (n*10 + (str[i]-'0')) % (Mod-1);
}
n -= 1;
__int64 ans = Pow(n);
printf("%I64d\n", ans);
}
return 0;
}hdu 4704 费马小定理+快速幂,布布扣,bubuko.com
原文:http://blog.csdn.net/u011504498/article/details/38226733