题意:将\([0,m)\)所有符合\(a[i]*t ~mod~ m\)的值求和
做法:
#include <bits/stdc++.h>
typedef long long ll;
const int N = 1e4 + 7;
using namespace std;
int T,n;
ll m,a[N];
//
//gcd(x,m) = g => gcd(x/g,m/g) = 1
//
//FOR : g|m
//    if FOR : gcd(a[i],m)|g
//        ans += {\sum [gcd(i/g,m/g) == 1]*i => \phi(m/g)*(m/g)/2*g => \phi(m/g)*m/2}
//
//hints:
//[gcd(i,n)==1] = [gcd(i,n-i)==1]
//\sum [gcd(i,n)==1]*i + \sum [gcd(n-i,n)==1]*(n-i) = n*\sum [gcd(i,n)==1] = n*phi(n)
//=> \sum [gcd(i,n)==1]*i = n*phi(n)/2
ll b[1000007];
int cnt = 0;
int ck(ll g) {
    for(int i=0;i<n;++i) if(g%a[i]==0) return 1;
    return 0;
}
ll phi(ll x) {
    ll t = x;
    for(int i=2;i*i<=x;++i) if(x%i==0) {
        t-=t/i;
        while(x%i==0) x/=i;
    }
    if(x>1)t-=t/x;
    return t;
}
int main() {
    scanf("%d",&T);
    for(int ti=1;ti<=T;++ti) {
        scanf("%d%lld",&n,&m);
        int f = 0;
        for(int i=0;i<n;++i) {
            scanf("%lld",&a[i]);
            a[i] = __gcd(a[i],m);
            if(a[i]==1) f=1;
        }
        if(f) {
            printf("Case #%d: %lld\n",ti,(m-1)*m>>1LL);
            continue;
        }
        sort(a,a+n);
        n = unique(a,a+n) - a;
        cnt = 0;
        for(ll i=1;i*i<=m;++i) {
            if(m%i==0) {
                if(i*i == m) b[cnt++] = i;
                else {
                    b[cnt++] = i;
                    if(m/i!=1) b[cnt++] = m/i;
                }
            }
        }
        sort(b,b+cnt);
        cnt = unique(b,b+cnt) - b;
        ll ans = 0;
        for(int i=0;i<cnt;++i) {
            if(b[i]<m&&ck(b[i])) {
                ans+= phi(m/b[i]);
            }
        }
        ans*=m; ans/=2;
        printf("Case #%d: %lld\n",ti,ans);
    }
    return 0;
}
原文:https://www.cnblogs.com/RRRR-wys/p/9689624.html