代码
import pandas as pd import numpy as np dates = pd.date_range(‘20130101‘, periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=[‘A‘,‘B‘,‘C‘,‘D‘]) # 行数,列数,赋值 df.iloc[1,2] = 1111 df.loc[‘20130101‘,‘B‘] = 2222 print(‘-1-‘) print(df) df[df.A>4] = 0 print(‘-2-‘) print(df) df.A[df.A>4] = 0 print(‘-3-‘) print(df) # 添加列 df[‘F‘] = np.nan print(‘-4-‘) print(df) df[‘E‘] = pd.Series([1,2,3,4,5,6],index=pd.date_range(‘20130101‘,periods=6)) print(‘-5-‘) print(df)
输出
-1-
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 1111 7
2013-01-03 8 9 10 11
2013-01-04 12 13 14 15
2013-01-05 16 17 18 19
2013-01-06 20 21 22 23
-2-
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 1111 7
2013-01-03 0 0 0 0
2013-01-04 0 0 0 0
2013-01-05 0 0 0 0
2013-01-06 0 0 0 0
-3-
A B C D
2013-01-01 0 2222 2 3
2013-01-02 4 5 1111 7
2013-01-03 0 0 0 0
2013-01-04 0 0 0 0
2013-01-05 0 0 0 0
2013-01-06 0 0 0 0
-4-
A B C D F
2013-01-01 0 2222 2 3 NaN
2013-01-02 4 5 1111 7 NaN
2013-01-03 0 0 0 0 NaN
2013-01-04 0 0 0 0 NaN
2013-01-05 0 0 0 0 NaN
2013-01-06 0 0 0 0 NaN
-5-
A B C D F E
2013-01-01 0 2222 2 3 NaN 1
2013-01-02 4 5 1111 7 NaN 2
2013-01-03 0 0 0 0 NaN 3
2013-01-04 0 0 0 0 NaN 4
2013-01-05 0 0 0 0 NaN 5
2013-01-06 0 0 0 0 NaN 6
原文:https://www.cnblogs.com/alexYuin/p/9603643.html