给下N,M,K.求$$\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\mod (10^9+7)$$
1<=N,M,K<=5000000,1<=T<=2000
#include<iostream> #include<algorithm> #include<cstdio> #define MAXN 5000010 #define MOD 1000000007LL using namespace std; int k=0,prime[MAXN]; long long p,f[MAXN],g[MAXN],sum[MAXN]; bool np[MAXN]; inline int read(){ int date=0,w=1;char c=0; while(c<‘0‘||c>‘9‘){if(c==‘-‘)w=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){date=date*10+c-‘0‘;c=getchar();} return date*w; } long long mexp(long long a,long long b,long long c){ long long s=1; while(b){ if(b&1)s=s*a%c; a=a*a%c; b>>=1; } return s; } void make(){ int m=MAXN-10; f[1]=g[1]=1; for(int i=2;i<=m;i++){ if(!np[i]){ prime[++k]=i; g[i]=mexp(i,p,MOD); f[i]=g[i]-1; } for(int j=1;j<=k&&prime[j]*i<=m;j++){ np[prime[j]*i]=true; if(i%prime[j]==0){ f[prime[j]*i]=f[i]*g[prime[j]]%MOD; break; } f[prime[j]*i]=f[i]*f[prime[j]]%MOD; } } for(int i=1;i<=m;i++)sum[i]=(sum[i-1]+f[i])%MOD; } long long solve(long long n,long long m){ long long ans=0; if(n>m)swap(n,m); for(int i=1,last=1;i<=n;i=last+1){ last=min(n/(n/i),m/(m/i)); ans=(ans+(sum[last]-sum[i-1]+MOD)%MOD*(n/i)%MOD*(m/i)%MOD)%MOD; } return ans; } int main(){ int t=read(); p=read(); make(); while(t--){ int n=read(),m=read(); printf("%lld\n",solve(n,m)); } return 0; }
原文:https://www.cnblogs.com/Yangrui-Blog/p/9462460.html