首页 > 其他 > 详细

Spark数据读取

时间:2018-07-20 19:48:11      阅读:145      评论:0      收藏:0      [点我收藏+]

  用惯了python或者R语言的DataFrame格式,对spark的RDD编程模式一开始上手可能有点不习惯。本文简单梳理一下spark中常用的RDD操作。

1.初始化spark环境

技术分享图片

2.读取本地文件

  读取本地文件之后,一般都是转换成Row类型RDD,方便后续操作;同时RDD转成DataFrame前,一定要先转化成Row类型的RDD。

技术分享图片

  当然,也可以将读取文件和转化成Row类型RDD写在一行代码中:

 技术分享图片

3.RDD转成DataFrame

  当然,我们依然可以用一行代码,将2、3步合并为一步,直接将读取的RDD转化成DataFrame,结果和上面是一样的;代码的含义为:选取了第1、2、3、4列生成DataFrame,列名为"id","orders","sumPrice","avgPrice"。

技术分享图片

4.Spark Sql直接读取csv文件为DataFrame

  如果是csv格式文件,可以直接利用spark sql读取成DataFrame,其中"com.databricks.spark.csv",是利用到了由databricks公司开发并开源外部数据源接口,通过这个类库我们才可以在spark sql中解析并查询CSV中的数据。

技术分享图片 

5.数值类型转换

  spark默认以String类型读取本地数据,我们可以根据需求,在读取数据过程中进行数据类型转换,例如转换成Double类型:

 技术分享图片

  也可以用map函数将指定的列进行数据类型转换,其他列不变;例如只将第2、3个字段转换成Double:

技术分享图片

Spark数据读取

原文:https://www.cnblogs.com/solong1989/p/9342589.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!