首页 > 其他 > 详细

SVM要点总结(一)

时间:2018-07-06 12:04:10      阅读:170      评论:0      收藏:0      [点我收藏+]

SVM支持向量机作为统计分类和回归分析中的重要方法,其理论推导难度较大,根据自己查阅的相关资料,按照问题理解、待处理数据是否可分的判断、主要推导过程、核函数的选择及推导、核函数的选择原则、python实现的相关方法、超参数调优等内容,以粗线条的方式,总结如下要点,方便查阅和易于理解:

1.问题分解

SVM是寻求最优的分割超平面问题<=>带一系列不等式约束的优化问题。

2.待处理数据是否可分的判断

(1)低维数据(1,2维),可有图清晰看出是否可分;

(2)高维数据(>2维):将数据转换成凸包(scipy.spatial.qhull()),再判断凸包是否相交(sweepline()未找到相关资料)。若相交,则不可分;否则,可分。

3.主要推导过程

技术分享图片

 4.python实现的相关方法

sklearn.svm

对于回归:SVC,NuSVC,LinearSVC

对于分类:SVR,NuSVR,LinearSVR

 待续

 

SVM要点总结(一)

原文:https://www.cnblogs.com/Byron-ourLove/p/9272831.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!