首页 > 其他 > 详细

(原创)lightgbm 一些错误情况处理

时间:2018-04-28 12:35:45      阅读:3355      评论:0      收藏:0      [点我收藏+]

1、做多分类问题时候(mutticlass),如果遇到

lightgbm.basic.LightGBMError: b‘Number of classes should be specified and greater than 1 for multiclass training‘

需要在params里面添加num_class参数项
import lightgbm as lgb
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris=datasets.load_iris()
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.3)
import numpy as np
train_data=lgb.Dataset(X_train,label=y_train)
validation_data=lgb.Dataset(X_test,label=y_test)
params={
    ‘learning_rate‘:0.1,
    ‘lambda_l1‘:0.1,
    ‘lambda_l2‘:0.2,
    ‘max_depth‘:4,
    ‘objective‘:‘multiclass‘,
    ‘num_class‘:3,  #lightgbm.basic.LightGBMError: b‘Number of classes should be specified and greater than 1 for multiclass training‘
}
clf=lgb.train(params,train_data,valid_sets=[validation_data])
from sklearn.metrics import roc_auc_score,accuracy_score
y_pred=clf.predict(X_test)
y_pred=[list(x).index(max(x)) for x in y_pred]
print(y_pred)
print(accuracy_score(y_test,y_pred))

(原创)lightgbm 一些错误情况处理

原文:https://www.cnblogs.com/techengin/p/8966735.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!