首页 > 其他 > 详细

深度学习Keras框架笔记之Activation类使用

时间:2018-03-17 17:21:41      阅读:226      评论:0      收藏:0      [点我收藏+]

   使用    

keras.layers.core.Activation(activation) 

  Apply an activation function tothe input.(貌似是把激活函数应用到输入数据的一种层结构)

       inputshape: 任意。当把这层作为某个模型的第一层时,需要用到该参数(元组,不包含样本轴)。

       outputshape:同input shape

       参数:

  •        activation:编码器,是一个layer类型或layer容器类型。
  •        decoder:解码器,是一个layer类型或layer容器类型。
  •        output_reconstruction:boolean。值为False时,调用predict()函数时,输出是经过最深隐层的激活函数。(这一块还不太了解,待以后了解了再补充)
  •        weights:激活函数名称或者Theano function。可以使用Keras内置的,也可以是传递自己编写的Theano function。如果不明确指定,那么将没有激活函数会被应用。

深度学习Keras框架笔记之Activation类使用

原文:https://www.cnblogs.com/68xi/p/8590888.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!