D - Black and White Tree
Time limit : 2sec / Memory limit : 256MB
Score : 900 points
Problem Statement
There is a tree with N vertices numbered 1 through N. The i-th of the N?1 edges connects vertices ai and bi.
Initially, each vertex is uncolored.
Takahashi and Aoki is playing a game by painting the vertices. In this game, they alternately perform the following operation, starting from Takahashi:
- Select a vertex that is not painted yet.
- If it is Takahashi who is performing this operation, paint the vertex white; paint it black if it is Aoki.
Then, after all the vertices are colored, the following procedure takes place:
- Repaint every white vertex that is adjacent to a black vertex, in black.
Note that all such white vertices are repainted simultaneously, not one at a time.
If there are still one or more white vertices remaining, Takahashi wins; if all the vertices are now black, Aoki wins. Determine the winner of the game, assuming that both persons play optimally.
Constraints
- 2≤N≤105
- 1≤ai,bi≤N
- ai≠bi
- The input graph is a tree.
Input
Input is given from Standard Input in the following format:
N a1 b1 : aN?1 bN?1
Output
Print First if Takahashi wins; print Second if Aoki wins.
Sample Input 1
3 1 2 2 3
Sample Output 1
First
Below is a possible progress of the game:
- First, Takahashi paint vertex 2 white.
- Then, Aoki paint vertex 1 black.
- Lastly, Takahashi paint vertex 3 white.
In this case, the colors of vertices 1, 2 and 3 after the final procedure are black, black and white, resulting in Takahashi‘s victory.
Sample Input 2
4 1 2 2 3 2 4
Sample Output 2
First
Sample Input 3
6 1 2 2 3 3 4 2 5 5 6
Sample Output 3
Second
貌似几百年没有做题了。。。。
题解见注释
/*
f[x]表示以x为根的子树中,先把x染成白之后对方下一步是否会在x子树中操作
g[x]表示以x为根的子树中,先手是否能获得胜利。
当我们枚举致胜节点为root时,先手能赢当且仅当g[root]=1.
初始化(对于单点):
g[x]=1;
f[x]=0;
转移:
1.f[x]等于所有儿子的g的位或
这个不难理解,因为只要有一个儿子的g为1的话,我们先把x染白,
对方一定会在g为1的这个子树中操作,不然就输了。
2.g[x]等于所有儿子的f的位与
这个也不难理解,因为只有所有儿子的f都为1了,我们才可以依次把每个儿子染白
最后依然有先手优势来染x,然后就赢了hhhh
考虑上述算法仅适用于根固定的情况 ,我们可以把它扩展一下,
第一遍dfs预处理以某个节点为根的函数值,
第二遍dfs在每个节点O(1)计算出函数值。
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#define ll long long
#define maxn 100005
#define pb push_back
using namespace std;
vector<int> son[maxn];
int n,m,g[maxn];
int f[maxn];
bool win=0;
void dfs1(int x,int fa){
int sz=son[x].size()-1,to;
f[x]=0,g[x]=1;
for(int i=0;i<=sz;i++){
to=son[x][i];
if(to==fa) continue;;
dfs1(to,x);
f[x]|=g[to],g[x]&=f[to];
}
}
void dfs2(int x,int fa,int fa_f,int fa_g){
int sz=son[x].size()-1,to;
int hzf[sz+2],hzg[sz+2];
hzf[sz+1]=1,hzg[sz+1]=0;
if(g[x]&fa_f) win=1;
for(int i=sz;i>=0;i--){
hzf[i]=hzf[i+1];
hzg[i]=hzg[i+1];
to=son[x][i];
if(to==fa) continue;
hzf[i]&=f[to];
hzg[i]|=g[to];
}
for(int i=0;i<=sz;i++){
to=son[x][i];
if(to==fa) continue;
dfs2(to,x,fa_g|hzg[i+1],fa_f&hzf[i+1]);
fa_g|=g[to];
fa_f&=f[to];
}
}
int main(){
int uu,vv;
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
son[uu].pb(vv);
son[vv].pb(uu);
}
dfs1(1,0);
dfs2(1,0,1,0);
if(win) puts("First");
else puts("Second");
return 0;
}