首页 > 其他 > 详细

Multiple_LinearRegression_Test2

时间:2018-01-21 18:42:17      阅读:170      评论:0      收藏:0      [点我收藏+]
 1 import csv
 2 import numpy as np
 3 from sklearn import datasets,linear_model
 4 
 5 with open("car_2.1.csv") as f:
 6     car_data = list(csv.reader(f))                #转换为list
 7     data_X = [row[:5] for row in car_data[:-1]]  #变量x
 8     data_Y = [row[-1] for row in car_data[:-1]]  #值y
 9     xPred = car_data[-1]                         #测试数据
10     f.close()
11 regression = linear_model.LinearRegression()     #调用回归函数
12 regression.fit(data_X,data_Y)
13 xPred = np.array(xPred[:-1],dtype=float)                     #去掉最后的y值,并转换为数组类型
14 print(regression.coef_)                          #各个变量前的系数
15 print(regression.intercept_)                     #获取截距
16 
17 #注意:reshape(1,-1)是为了让矩阵能够对齐
18 yPred = regression.predict(xPred.reshape(1, -1))                #测试数据
19 print("结果为:",yPred)

新手入门-解决csv文件中存在类型变量的问题代码

car_2.1.csv文件地址:链接:https://pan.baidu.com/s/1pMtZHCB 密码:wrce

谢谢观看!

Multiple_LinearRegression_Test2

原文:https://www.cnblogs.com/KevinK/p/8324751.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!