首页 > 其他 > 详细

sklearn.learning_curve

时间:2018-01-12 14:08:40      阅读:531      评论:0      收藏:0      [点我收藏+]

学习曲线函数:

from sklearn.learning_curve import learning_curve

调用格式:

learning_curve(estimator, X, y, train_sizes=array([0.1, 0.325, 0.55, 0.775, 1. ]), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch=‘all‘, verbose=0)  

# exploit 开发,开拓  incremental 增加的  dispatch 派遣,分派  verbose 冗长的

参数:

  • estimator:分类器
  • X:训练向量
  • y:目标相对于X分类或者回归
  • train_sizes:训练样本相对的或绝对的数字,这些量的样本将会生成learning curve。
  • cv:确定交叉验证的分离策略(None:使用默认的3-fold cross-validation;integer:确定几折交叉验证)
  • verbose:整型,可选择的。控制冗余:越高,有越多的信息。

返回值:

train_sizes_abs:生成learning curve的训练集的样本数。重复的输入会被删除。

train_scores:在训练集上的分数

test_scores:在测试集上的分数

 

sklearn.learning_curve

原文:https://www.cnblogs.com/keye/p/8275385.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!