首页 > 其他 > 详细

向量范数和矩阵范数

时间:2017-12-26 13:11:42      阅读:206      评论:0      收藏:0      [点我收藏+]
 
原文:https://www.zhihu.com/question/20473040
以下分别列举常用的向量范数和矩阵范数的定义。
  • 向量范数

1-范数:

技术分享图片,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:

技术分享图片,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

技术分享图片-范数:技术分享图片,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。


技术分享图片-范数:技术分享图片

,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。


p-范数:技术分享图片
,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。


  • 矩阵范数

1-范数:技术分享图片
, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。


2-范数:技术分享图片技术分享图片技术分享图片的最大特征值。

,谱范数,即A‘A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

技术分享图片-范数:技术分享图片

,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。


F-范数:技术分享图片

,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。


核范数:技术分享图片是A的奇异值

即奇异值之和。

向量范数和矩阵范数

原文:https://www.cnblogs.com/hahalala/p/8117220.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!