找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base。再分为两个子数组的排序。如此递归下去。
public class QuickSort {
public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
}
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
}
private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后基准值的下角标
}
public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}
public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
在数组几乎有序时,快排性能不好(因为每趟排序后,左右两个子递归规模相差悬殊,大的那部分最后很可能会达到O(n^2))。
解决:基准值随机地选取,而不是每次都取第一个数。这样就不会受“几乎有序的数组”的干扰了。但是对“几乎乱序的数组”的排序性能可能会稍微下降,至少多了排序前交换的那部分,乱序时这个交换没有意义...有很多“运气”成分..
public class QuickSort {
public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
}
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
}
private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr,left,(int)(Math.random()*(right - left + 1)+left));
T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
}
public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}
public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
快排是不断减小问题规模来解决子问题的,需要不断递归。但是递归到规模足够小时,如果继续采用这种 不稳定+递归 的方式执行下去,效率不见得会很好。
所以当问题规模较小时,近乎有序时,插入排序表现的很好。Java自带的Arrays.sort()里经常能看到这样的注释:“Use insertion sort on tiny arrays”,“Insertion sort on smallest arrays”
public class QuickSort {
public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
}
/**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
if (right - left <= k) {
insertionSort(arr, left, right);
return;
}
int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
}
public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
}
private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left));
T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
}
public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}
public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}
原文:http://www.cnblogs.com/noKing/p/7922397.html