首页 > 其他 > 详细

TensorFlow Demo2

时间:2017-11-27 00:52:54      阅读:252      评论:0      收藏:0      [点我收藏+]
import tensorflow as tf
import numpy as np


def add_layer(inputs,in_size,out_size,activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases =  tf.Variable(tf.zeros([1,out_size])) + 0.1
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    if activation_function is None :
        outputs= Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])

l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)

loss =tf.reduce_mean(tf.reduce_sum( tf.square(ys-prediction),reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i % 50 == 0:
        print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

 

TensorFlow Demo2

原文:http://www.cnblogs.com/guolaomao/p/7901020.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!