首页 > 其他 > 详细

数据分析基础之Linalg的使用

时间:2017-11-03 22:33:55      阅读:322      评论:0      收藏:0      [点我收藏+]

Linear algebra

 

简介

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities.

If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.

All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of these routines is also a two-dimensional array.

 

1.模块文档

技术分享View Code
技术分享View Code

 

2.可用方法

‘bench‘,‘cholesky‘,‘cond‘,‘det‘,‘division‘,‘eig‘,‘array‘,‘eigh‘,‘eigvals‘,‘eigvalsh‘,‘info‘,‘inv‘,‘lapack_lite‘,‘linalg‘,‘lstsq‘,‘matrix_power‘,‘matrix_rank‘,‘multi_dot‘,‘norm‘,‘pinv‘,‘print_function‘,‘qr‘,‘slogdet‘,‘solve‘,‘svd‘,‘tensorinv‘,‘tensorsolve‘,‘test‘

eig : eigenvalues and right eigenvectors of general arrays
eigvalsh : eigenvalues of symmetric or Hermitian arrays.
eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays.

 

3.常用方法

首先导入相关模块

import numpy as np
from scipy import linalg as LA
#or
#from numpy import linalg as LA

 

3.1求数组的行列式:det

技术分享

技术分享

 

3.2求方阵的特征值、特征向量:eig

 技术分享

 

3.3求方阵的逆矩阵::inv

 技术分享

技术分享

 

3.4求解线性方程组:solve

Solve the system of equations x0 x1 9 and x0 x1 8:

 技术分享

 

3.5一个方阵的整数次幂:matrix_power

 技术分享

 技术分享

 

3.6计算在一个函数调用两个或两个以上的阵列的点积:multi_dot

 技术分享

4.官网文档

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

 

数据分析基础之Linalg的使用

原文:http://www.cnblogs.com/jasonhaven/p/7780769.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!