首页 > 编程语言 > 详细

Python机器学习(1):KMeans聚类

时间:2017-10-30 18:59:49      阅读:332      评论:0      收藏:0      [点我收藏+]

Python进行KMeans聚类是比较简单的,首先需要import numpy,从sklearn.cluster中import KMeans模块:

import numpy as np
from sklearn.cluster import KMeans

然后读取txt文件,获取相应的数据并转换成numpy array:

X = []
f = open(rktj4.txt)
for v in f:
    regex = re.compile(\s+)
    X.append([float(regex.split(v)[3]), float(regex.split(v)[6])])

X = np.array(X)

设置类的数量,并聚类:

n_clusters = 5
cls = KMeans(n_clusters).fit(X)

完整代码:

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import re

X = []
f = open(rktj4.txt)
for v in f:
    regex = re.compile(\s+)
    X.append([float(regex.split(v)[3]), float(regex.split(v)[6])])

X = np.array(X)

n_clusters = 5
cls = KMeans(n_clusters).fit(X)
cls.labels_

markers = [^,x,o,*,+]
for i in range(n_clusters):
    members = cls.labels_ == i
    plt.scatter(X[members, 0], X[members, 1], s=60, marker=markers[i], c=b, alpha=0.5)
    print 
    
plt.title(‘‘)
plt.show()

运行结果:

技术分享

Python机器学习(1):KMeans聚类

原文:http://www.cnblogs.com/mstk/p/7755635.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!