首页 > 其他 > 详细

又是毕业季1&&又是毕业季2

时间:2017-10-16 15:58:51      阅读:336      评论:0      收藏:0      [点我收藏+]

又是毕业季2

          n/k;

又是毕业季2

一开始很容易想到枚举n个数取k个的所有组合,然后分别用辗转相除法求最大公约数,但是复杂度明显不符合要求,于是必须换一种思路。

我们想到,k个数的公约数含义就是这k个数均含有某个因数,如果我们把所有数的因数全部求出来,发现有k个数均含有某个因数,那么这个数必然是这k个数的公约数。其中找出最大的就是它们的最大公约数。但是要如何高效的做到这点呢?考虑到对于k=1,2……,n都要求出,我们可以这么做:

  • 1、 求出每个因数出现的次数。

  • 2、 对于每个次数记录最大的因数。

  • 3、 根据f[k]=max(f[k],f[k+1])逆向递推。(如果已经知道k个数的最大公约数是m,那么l(l<k)个数的最大公约数一定大于等于m)。

算法复杂度o(n*sqrt(inf))。

又是毕业季1&&又是毕业季2

原文:http://www.cnblogs.com/ZDHYXZ/p/7676959.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!