题目链接 Turning in Homework
考虑区间DP
f[i][j][0]为只考虑区间[i, j]且最后在a[i]位置交作业的答案。
f[i][j][1]为只考虑区间[i, j]且最后在a[j]位置交作业的答案。
首先对a[i]升序排序(位置第一关键字,时间第二关键字)
然后就是区间DP了
f[i][j]可以从f[i][j + 1], f[i - 1][j]推过来。
即
f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se))
f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se))
f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));
f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));
其中fi代表位置,se代表时间。
最后的答案为min{min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - B)}
B位规定的终点。
时间复杂度$O(n^{2})$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second
typedef long long LL;
const int N = 1010;
int n, m, ed, ans;
pair <int, int> a[N];
int f[N][N][2];
int main(){
scanf("%d%d%d", &n, &m, &ed);
rep(i, 1, n) scanf("%d%d", &a[i].fi, &a[i].se);
sort(a + 1, a + n + 1);
f[1][n][0] = max(a[1].fi, a[1].se);
f[1][n][1] = max(a[n].fi, a[n].se);
dec(d, n - 1, 1){
rep(i, 1, n - d + 1){
int j = i + d - 1;
f[i][j][0] = 1 << 30;
if (j < n) f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se));
if (i > 1) f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se));
f[i][j][1] = 1 << 30;
if (i > 1) f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));
if (j < n) f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));
}
}
ans = 1 << 30;
rep(i, 1, n) ans = min(ans, min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - ed));
printf("%d\n", ans);
return 0;
}
POJ 1991 Turning in Homework(区间DP)
原文:http://www.cnblogs.com/cxhscst2/p/7499239.html