首页 > 其他 > 详细

排列组合的学习,基础入门,选修2-3

时间:2017-08-27 11:34:47      阅读:191      评论:0      收藏:0      [点我收藏+]

如题:用0,1,2,3,4,5可以组成多少个无重复数字比2000大的四位偶数?

答案为:在文末尾公布的数字%3214567

令:a=四位偶数

解法一(补偿法):

N= N(a)-N(不大于2000的a

     N(a)=N(个位为0的a)+N(个位为2的a)+N(个位为4的a

                   N(个位为0的a)    = 5*4*3 =60

                   N(个位为2,4的a) =(4*4*3)*2=48*2=96

     N(不大于2000的a)=N(个位为1的a)= 3*4*3 =36

解法二(分类法):

N=N(首位大于2的a)+N(首位为2的a

     N(首位大于2的a)=N(满足条件个位为0)+N(满足条件个位为2)+N(满足条件个位为4

                                       N(满足条件个位为0)= 3*4*3 =36

                                       N(满足条件个位为2)= 3*4*3 =36

                                       N(满足条件个位为4)= 2*4*3 =24

     N(首位为2的a)= 3*4*2 = 24

所以得到:6429254

排列组合的学习,基础入门,选修2-3

原文:http://www.cnblogs.com/JasonCow/p/7439882.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!