首页 > 其他 > 详细

莫烦TENSORFLOW(5)

时间:2017-08-19 14:49:54      阅读:254      评论:0      收藏:0      [点我收藏+]

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases

if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs


#data
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])

l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
# print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
lines = ax.plot(x_data,prediction_value,‘-r‘,lw=5)
plt.pause(0.1)

 

莫烦TENSORFLOW(5)

原文:http://www.cnblogs.com/payne1991/p/7396537.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!