首页 > 其他 > 详细

hadoop 之inputSplit

时间:2017-08-15 22:12:17      阅读:364      评论:0      收藏:0      [点我收藏+]

(本文非原创,摘抄于http://blog.csdn.net/dr_guo/article/details/51150278)

  输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组。

Hadoop 2.x默认的block大小是128MB,hadoop 1.x默认的block大小是64MB,可以在hdfs-site.xml中设置dfs.block.size,注意单位是byte。

 

分片大小范围可以在mapred-site.xml中设置,mapred.min.split.size mapred.max.split.size,minSplitSize大小默认为1B,maxSplitSize大小默认为Long.MAX_VALUE = 9223372036854775807

 

minSize=max{minSplitSize,mapred.min.split.size} 

 

splitSize=max{minSize,min{maxSize,blockSize}}

我们看一下源码

技术分享

所以:我们没有设置分片的范围的时候,分片大小是由block块大小决定的,和它的大小一样。比如把一个258MB的文件上传到HDFS上,假设block块大小是128MB,那么它就会被分成三个block块,与之对应产生三个split,所以最终会产生三个map task。我又发现了另一个问题,第三个block块里存的文件大小只有2MB,而它的block块大小是128MB,那它实际占用Linux file system的多大空间?

答案是实际的文件大小,而非一个块的大小。

 

hadoop 之inputSplit

原文:http://www.cnblogs.com/Zchaowu/p/7367912.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!