首页 > 其他 > 详细

poj1564 Sum it up

时间:2014-06-22 14:36:01      阅读:369      评论:0      收藏:0      [点我收藏+]

题目链接:

http://poj.org/problem?id=1564

题目:

Sum It Up
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5839   Accepted: 2984

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of‘, the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE‘. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

Source


这个题目是典型的dfs。。

我觉得主要的就是重复的数字不需要进行搜索了,因为已经搜索过了,否则会重复。。

当不满足条件时返回上一臣调用处。。

所以代码为:

#include<cstdio>
#include<cstdlib>
const int maxn=100+10;
int a[maxn],b[maxn];
int t,n,ok;
void dfs(int i,int j,int sum)
{
     int k;
     if(sum>t)
        return;
     if(sum==t)
     {
         printf("%d",b[1]);
         for(k=2;k<j;k++)
            printf("+%d",b[k]);
         printf("\n");
         ok=1;
         return;
     }
     for(k=i;k<=n;k++)
     {
         b[j]=a[k];
         dfs(k+1,j+1,sum+a[k]);
         while(a[k]==a[k+1])
            k++;
    }
}

int main()
{
    int sum;
    while(scanf("%d%d",&t,&n)!=EOF)
    {
        if(t==0&&n==0) return 0;
        sum=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum=sum+a[i];
        }
        printf("Sums of %d:\n",t);
        ok=0;
        if(sum<t)
        {
            printf("NONE\n");
            continue;
        }
        else
            dfs(1,1,0);
        if(!ok)
            printf("NONE\n");
    }
    return 0;
}


poj1564 Sum it up,布布扣,bubuko.com

poj1564 Sum it up

原文:http://blog.csdn.net/u014303647/article/details/32750227

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!