题意:给出n个字符串和q个询问,每次询问给出两个串 p 和 s 。要求统计所有字符串中前缀为 p 且后缀为 s (不可重叠)的字符串的数量。
析:真是觉得没有思路啊,看了官方题解,真是好复杂。
假设原始的字符串 数组为A,首先将A中的每个字符串都进行翻转,得到字符串数组B,然后,将A和B按字典序排序。
对于一个查询来说有一个前缀p和后缀s, 所有包含前缀p的字符串在A中是连续的,可通过二分求出该区间 设为[Lp,Rp],同样,所有包含后缀s的字符串在B中也是连续的,设为[Ls,Rs]
接下来只需求解 有多少个字符串前缀是在[Lp,Rp] 同时后缀在[Ls,Rs]。对于每个字符串,假设在A中是第x个,在B中是第y个 ,那么我们只需要判断有多少个字符串 Lp<=x<=Rp 同时 Ls<=y<=Rs
该问题转化为,有一些点(每个字符串相当于一个点,x是按前缀排完序的位置,y是按后缀排序),现给定一些矩形(每个查询可转化为 Lp<=x<=Rp,Ls<=y<=Rs),问矩形中包含多少个点,该问题是经典的矩形覆盖问题,线段树+扫描线 即可求出。
按上述方法求出后,会存在重叠的问题 。如有一个字符串 aaa 查询如果为 aa aa的话也会查到 aaa。 那么我们需要进行去重,可直接对查询的前缀或者后缀做一个遍历,枚举重叠的长度,然后再哈希判断是否存在这样的原始字符串即可。
时间复杂度 O(n\log(n)+|S|)O(nlog(n)+∣S∣)
避免hash可以离线暴力在字典树上建线段树,查询在字典树上找到后缀对应节点查找前缀区间和。空间O(|S|log(n))O(∣S∣log(n))。时间复杂度 O(n\log(n)+|S|)O(nlog(n)+∣S∣)
也可以直接hash离线做。
后来还是在网上看到了大佬们的解法,真是奇妙。
离线操作,先把前缀和后缀通过 s + ‘{‘ + p,作为模板插入到AC 自动机中去,然后再对原来的文本进行查询,先把文本构造成(假设文本是abcd) abcd{abcd,这样的就可以使用AC自动机进行查询了,还要判断是不是重叠,这可以通过比较字符串的长度来判断。注意去重,因为没有去重WA到死、、、
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <assert.h>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 0xffffffffffLL;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int maxn = 100000 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
const int sigma = 27;
const int maxnode = 2200000 + 1000;
struct Aho{
int ch[maxnode][sigma];
int val[maxnode];
int f[maxnode], last[maxnode];
int ans[maxn], len[maxnode];
int sz;
void init(){
sz = 1;
memset(ch[0], 0, sizeof ch[0]);
memset(ans, 0, sizeof ans);
}
int idx(char ch){ return ch - ‘a‘; }
int insert(const char *s, int v){
int u = 0, i = 0;
while(s[i]){
int c = idx(s[i]);
if(!ch[u][c]){
memset(ch[sz], 0, sizeof ch[sz]);
val[sz] = 0;
ch[u][c] = sz++;
}
u = ch[u][c];
++i;
}
if(val[u]) return val[u];
len[u] = i;
return val[u] = v;
}
void getFail(){
queue<int> q;
f[0] = 0;
for(int c = 0; c < sigma; ++c){
int u = ch[0][c];
if(u){ f[u] = 0; q.push(u); last[u] = 0; }
}
while(!q.empty()){
int r = q.front(); q.pop();
for(int c = 0; c < sigma; ++c){
int u = ch[r][c];
if(!u){ ch[r][c] = ch[f[r]][c]; continue; }
q.push(u);
int v = f[r];
while(v && !ch[v][c]) v = f[v];
f[u] = ch[v][c];
last[u] = val[f[u]] ? f[u] : last[f[u]];
}
}
}
void query(const char *T, int n){
int j = 0;
for(int i = 0; T[i]; ++i){
int c = idx(T[i]);
j = ch[j][c];
if(val[j]) print(j, n);
else if(last[j]) print(last[j], n);
}
}
void print(int j, int n){
if(!j) return ;
if(len[j] <= n) ++ans[val[j]];
print(last[j], n);
}
};
Aho aho;
char *s[maxn];
char str[maxnode];
char s1[maxn], s2[maxn];
int len[maxn], pos[maxn];
int main(){
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
int cnt = 0;
for(int i = 1; i <= n; ++i){
s[i] = str + cnt;
scanf("%s", s[i]);
len[i] = strlen(s[i]) + 1;
cnt += len[i];
strcpy(str+cnt, s[i]);
str[cnt-1] = ‘{‘;
cnt += len[i];
}
aho.init();
for(int i = 1; i <= m; ++i){
scanf("%s %s", s1+1, s2);
s1[0] = ‘{‘;
strcat(s2, s1);
pos[i] = aho.insert(s2, i);
}
aho.getFail();
for(int i = 1; i <= n; ++i)
aho.query(s[i], len[i]);
for(int i = 1; i <= m; ++i)
printf("%d\n", aho.ans[pos[i]]);
}
return 0;
}
/*
2
4 4
aba
cde
acdefa
cdef
a a
cd ef
ac a
ce f
1 1
aaa
aa aa
*/
原文:http://www.cnblogs.com/dwtfukgv/p/7363812.html