首页 > 其他 > 详细

[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)

时间:2014-06-28 13:37:56      阅读:312      评论:0      收藏:0      [点我收藏+]

设 $f$ 为 $[0,1]$ 上的连续非负函数, 找出满足条件 $$\bex \int_0^1 f(x)\rd x=1,\quad \int_0^1 xf(x)\rd x=a,\quad \int_0^1 x^2f(x)\rd x=a^2 \eex$$ 的所有 $f$, 其中 $a$ 为给定实数.  

 

解答: 由 $$\beex \bea a^2&=\sex{\int_0^1 xf(x)\rd x}^2\\ &=\sex{\int_0^1 \sqrt{f(x)}\cdot x\sqrt{f(x)}\rd x}^2\\ &\leq \int_0^1 f(x)\rd x\cdot \int_0^1 x^2f(x)\rd x\\ &=1\cdot a^2\\ &=a^2 \eea \eeex$$ 及 Schwarz 不等式中等式成立的条件知 $$\bex \exists\ k,\st x\sqrt{f(x)}=k\sqrt{f(x)}. \eex$$ 故 $f\equiv 0$ (否则, 若 $f(x_0)>0$, 则在某 $U(x_0)$ 内, $x=k$, 矛盾).

[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数),布布扣,bubuko.com

[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)

原文:http://www.cnblogs.com/zhangzujin/p/3798614.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!