思路来源于 FXXL - -
一个比较奇怪的地方就是第三步可以不做,也就是ans至少为1,听说场内有提问的,然后 admin 说可以不做- - (wa的我心烦)
/*
HDU 6049 - Sdjpx Is Happy [ 枚举,剪枝 ] | 2017 Multi-University Training Contest 2
题意:
长度为N的排列 N <= 3000
排序分三个步骤:
1.原数组分为不相交的K段
2.每段都独立排序
3.选择其中两段swap
问按步骤能成功排序的K能取到的最大是多少
分析:
先预处理出任意段的最小值和最大值
再处理出任意[l,r]段最多能分成多少段有效段,用f[i,j]表示
所谓的有效段首先满足 Max[i,j]-Min[i,j] = j-i
再满足其中每段依此递增,即前一段的最大值 == 后一段的最小值-1
设需要交换的前一段为[i, j] 后一段为[k, t]
枚举i,j,则 t = Max[i][j],再枚举k,更新答案
虽然枚举复杂度大,但可以剪枝
比如要求:f[i,j] > 0 && i 如果不为 1 则 Min[1,i-1] = 1, Max[1, i-1] = i-1
类似的对k, t剪枝
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 3005;
int Max[N][N], Min[N][N];
int f[N][N];
int t, n;
int a[N], last[N];
void init()
{
memset(f, 0, sizeof(f));
int i, j, k;
for (i = 1; i <= n; i++) Max[i][i] = Min[i][i] = a[i];
for (k = 2; k <= n; k++)
for (i = 1; i+k-1 <= n; i++)
{
j = i+k-1;
Max[i][j] = max(Max[i+1][j], Max[i][i]);
Min[i][j] = min(Min[i+1][j], Min[i][i]);
}
for (i = 1; i <= n; i++) f[i][i] = 1, last[i] = i;
for (k = 2; k <= n; k++)
for (i = 1; i+k-1 <= n; i++)
{
j = i+k-1;
if (Max[i][j] - Min[i][j] != j-i) continue;
if (Min[i][last[i]] != Min[i][j]) f[i][j] = 1;
else f[i][j] = f[i][last[i]] + 1;
last[i] = j;
}
}
int ans;
void solve()
{
ans = f[1][n];
for (int i = 1; i <= n; i++)
{
if ( i != 1 && (!f[1][i-1] || Max[1][i-1] != i-1)) continue;
for (int j = i; j <= n; j++)
{
if (!f[i][j]) continue;
int t = Max[i][j];
if (t != n && (!f[t+1][n] || Min[t+1][n] != t+1 || Max[t+1][n] != n)) continue;
for (int k = t; k > j; k--)
{
if (!f[k][t] || Min[k][t] != i ) continue;
if (k > j+1)
{
if (!f[j+1][k-1] || Max[k][t] != Min[j+1][k-1]-1 || Min[i][j] != Max[j+1][k-1]+1) continue;
}
else
{
if (Max[k][t] != Min[i][j]-1) continue;
}
ans = max(ans, f[1][i-1] + 2 + f[j+1][k-1] + f[t+1][n]);
}
}
}
}
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", a+i);
init();
solve();
printf("%d\n", ans);
}
}
HDU 6049 - Sdjpx Is Happy | 2017 Multi-University Training Contest 2
原文:http://www.cnblogs.com/nicetomeetu/p/7271518.html