【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4025
【题目大意】
给出一张图,有些边只存在一段时间,问在一个每个时间段,
这张图是否是二分图
【题解】
判断是否是二分图只要判断是否存在奇环即可,
我们对时间进行分治,在操作树上加删边,
保留涵盖时间区间的有效操作,将剩余操作按时间划分到两端的子树,
退出子树的时候撤销加边操作。
对于判断奇环,我们用并查集维护每个点与标兵的相对距离的奇偶性即可,
由于需要撤销操作,我们放弃对并查集的压缩操作,
采用按秩合并,保证查询的logn复杂度,同时保存每次合并过程即可。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=300010;
namespace Union_Find_Set{
int st[N],top,f[N],val[N],d[N];
void Initialize(int n){for(int i=1;i<=n;i++)f[i]=i,val[i]=0,d[i]=1;top=0;}
int sf(int x){return f[x]==x?x:sf(f[x]);}
int ask(int x){
int res=0;
for(;x!=f[x];x=f[x])res^=val[x];
return res;
}
void back(int tag){
for(;top!=tag;top--){
if(st[top]<0)d[-st[top]]--;
else{
f[st[top]]=st[top];
val[st[top]]=0;
}
}
}
void Union(int x,int y,int _val){
if(d[x]>d[y])swap(x,y);
if(d[x]==d[y])d[y]++,st[++top]=-y;
f[x]=y; val[x]=_val; st[++top]=x;
}
}
using namespace Union_Find_Set;
struct data{int x,y,l,r;}E[N];
void dfs(int l,int r,int pos){
int t=top;
for(int i=1;i<=pos;i++){
int x=E[i].x,y=E[i].y;
if(E[i].l<=l&&E[i].r>=r){
int fx=sf(x),fy=sf(y);
int val=ask(x)^ask(y)^1;
if(fx==fy){
if(val){
for(int j=l;j<=r;j++)puts("No");
back(t); return;
}
}Union(fx,fy,val);
swap(E[i--],E[pos--]);
}
}if(l==r){puts("Yes");back(t);return;}
int mid=(l+r)>>1,ppos=pos;
for(int i=1;i<=ppos;i++){
if(E[i].l>mid)swap(E[i--],E[ppos--]);
}dfs(l,mid,ppos);
ppos=pos;
for(int i=1;i<=ppos;i++){
if(E[i].r<=mid)swap(E[i--],E[ppos--]);
}dfs(mid+1,r,ppos);
back(t);
}
int n,m,op,x,y,l,r,T;
int main(){
scanf("%d%d%d",&n,&m,&T);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&x,&y,&l,&r);
E[i]=(data){x,y,++l,r};
}Initialize(n);
for(int i=1;i<=m;i++)if(E[i].l>E[i].r)swap(E[i],E[m--]);
dfs(1,T,m);
return 0;
}
原文:http://www.cnblogs.com/forever97/p/bzoj4025.html