Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item. Follow up: Could you do both operations in O(1) time complexity? Example: LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
键值对想到hashmap, 增删节点考虑链表, + 头尾节点, 因此要构造相应的类
public class LRUCache {
    private class Node{
        int key;
        int value;
        Node pre;
        Node next;
        public Node(int key, int value) {
            this.key = key;
            this.value = value;
            this.pre = null;
            this.next = null;
        }
    }
    private int capacity;
    private Node head = new Node(-1, -1);
    private Node tail = new Node(-1, -1);
    HashMap<Integer, Node> map = new HashMap<>();
    public LRUCache(int capacity) {
        this.capacity = capacity;
        head.next = tail;
        tail.pre = head;
    }
    
    public int get(int key) {
        if (!map.containsKey(key)) {
            return -1;
        }
        Node cur = map.get(key);
        cur.pre.next = cur.next;
        cur.next.pre = cur.pre;
        moveToTail(cur);
        return cur.value;
        
    }
    
    public void put(int key, int value) {
        if (get(key) != -1) {
            map.get(key).value = value;
            return;
        }
        Node cur = new Node(key, value);
        if (map.size() == capacity) {
            map.remove(head.next.key);
            head.next.next.pre = head;
            head.next = head.next.next;
           
        }
        map.put(key, cur);
        moveToTail(cur);
        
    }
    private void moveToTail(Node cur) {
        tail.pre.next = cur;
        cur.pre = tail.pre;
        tail.pre = cur;
        cur.next = tail;
    }
}
/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */
原文:http://www.cnblogs.com/apanda009/p/7242199.html