以下是Hans Uszkoreit的演讲全文,AI科技大本营略做修改:
今天我将介绍目前人工智能的两个主要方向,基于行为的学习和基于知识的学习;另外我会讲一下商业智能以及工业4.0、开放数据与企业数据,以及开放的知识图谱和企业知识图谱;接着我会介绍文本分析的大数据方法、文本数据理解中的机器学习和结构化知识;最后我会讲一下机器学习机器前景,这个大家已经看到很多了。
两种不同的系统
我们看到,有很多的新闻都在报道人工智能在深度学习上所取得的一些成功,这已经听说过很多了。这些成果涉及人工智能各个方面,如语音、文本和自动驾驶等,深度学习似乎正在改变我们的生活,确实也是如此。
但我们还有另外一种系统,这就是IBM的Watson,它在一个美国很著名的综艺节目里面获胜了,他们没有进行任何深度学习,它只是IBM系统的成功。Wason是另外一种系统,它可以掌握大量的结构化的知识,将非结构化知识当作结构化知识使用。
我们看到有两种不同的系统:在人工智能历史上很多系统都是基于知识的系统,有一种系统更多的是针对比较小群体的行为,比如说使用基于规则的专家系统来检查信用的,且已经用了很多年了;还有一种系统,在进行机器学习之前做研究行为,我们见到的更多是经典的反应性机器学习。
后来在90年代的时候,机器学习崛起,并在2000年之后变得更加的成功,也有很多的分类还有方法,我们现在的话在两侧都有机器学习。比如像谷歌的机器翻译,还有很多新的系统是用于自动驾驶,另外还有语音理解。
所以说,像人工翻译只能理解它能够理解的东西,但是谷歌的某些机器翻译是像鹦鹉学舌一样进行学习,他们学习特定的行为。但是,它们对语言本身没有任何理解,它们本身也没有的固有知识,有的只是隐性知识。因此它们无法理解中文或中文的属性。
另外,我们还有一种是IBM的Watson和聊天机器人,它们需要控制大量的结构化知识,而且这些知识是动态的,将这些知识放到深度学习多层神经网络中并不是优选的策略。DFKI也是这样一种系统。
未来我们会开发出一些可以作预测的超人类人工智能,可以更好地结合两者,这是我们接下来的重要一步。我刚才已经说过这些系统没有真正的知识,所以说我们把它叫做“狭义人工智能”。比如,系统不能做些其他系统的任务:能下围棋的系统不能做翻译,能翻译的系统不能做驾驶,能驾驶的系统不能做翻译。
机器可以模仿和学习人类的行为,比如说学习世界顶级棋手的下棋方式;我们驾驶的系统可以从人的驾驶行为中学习,并能避免发生事故;翻译的机器人可以同时翻译几十种不同的语言,人是做不到这一点的。
但是机器还是无法模仿四岁儿童在一小时内的行为。四岁儿童懂得的知识虽少,但他所有这些知识是可以重新再利用得,比如说他可以从冰箱里取出东西或放回去东西,他也能够回答关于冰箱的一些知识。目前我们的深度学习没有这种可再利用的知识。
http://yyk.familydoctor.com.cn/20817/content_699107.html
http://yyk.familydoctor.com.cn/20817/content_699293.html
http://yyk.familydoctor.com.cn/20817/content_699555.html
http://yyk.familydoctor.com.cn/20817/content_699821.html
http://yyk.familydoctor.com.cn/20817/content_696338.html
http://yyk.familydoctor.com.cn/20817/content_696503.html
http://yyk.familydoctor.com.cn/20817/content_696716.html
https://www.wang1314.com/doc/topic-3306974-1.html
http://yyk.familydoctor.com.cn/20817/content_696841.html
http://yyk.familydoctor.com.cn/20817/content_697219.html