题意:求人从左到右走影子的最大长度L。
设人离开灯的长度为x,当灯、人的头顶和墙角在一条直线上时(此时人在A点),影子全部投在地上,此时x = (H-h)*D/H;当人继续向前走,一部分影子就会投在墙上,当人走到最右边,影子长度即为人的高度。所以从A点到墙角,人的影子长度先增大后减小,是一个凸性函数。根据两个相似三角形把L表示成x的函数L= D+H-x-(H-h)*D/x,然后三分求解最大值。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#define LL long long
#define _LL __int64
#define eps 1e-9
using namespace std;
double H,h,D;
double cal(double mid)
{
return D+H-mid-(H-h)*D/mid;
}
double solve(double low, double high)
{
while(high - low > eps)
{
double mid = (low + high) / 2.0;
double midmid = (mid + high) / 2.0;
double ans1 = cal(mid);
double ans2 = cal(midmid);
if(ans1 < ans2)
low = mid;
else high = midmid;
}
return low;
}
int main()
{
int test;
scanf("%d",&test);
while(test--)
{
scanf("%lf %lf %lf",&H,&h,&D);
double ans = solve((H-h)*D/H,D);
printf("%.3lf\n",cal(ans));
}
return 0;
}
题意很简单,求出一个点x使其他所有点与该点的距离差s^3*wi最小。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
struct node
{
double x;
double w;
}p[50010];
int n;
double cal(double x)
{
double ans = 0;
for(int i = 0; i < n; i++)
{
double tmp = fabs(p[i].x - x);
ans += tmp * tmp * tmp * p[i].w;
}
return ans;
}
double solve(double low, double high)
{
double ans1,ans2;
while(high - low > eps)
{
double mid = (low+high)/2.0;
double midmid = (mid + high)/2.0;
ans1 = cal(mid);
ans2 = cal(midmid);
if(ans1 < ans2)
high = midmid;
else
low = mid;
}
return low;
}
int main()
{
int test;
scanf("%d",&test);
double low, high;
for(int item = 1; item <= test; item++)
{
scanf("%d",&n);
low = INF;
high = -INF;
for(int i = 0; i < n; i++)
{
scanf("%lf %lf",&p[i].x,&p[i].w);
low = min(low, p[i].x);
high = max(high,p[i].x);
}
double ans = solve(low, high);
printf("Case #%d: %.0lf\n",item,cal(ans));
}
return 0;
}题意:给出一个直角弯道,弯道的宽分别为x和y,汽车的长和宽为l和d,问汽车能否通过弯道。
思路:
汽车要通过弯道,其左边要尽量靠着O点,右下角要尽量贴着地面。如图所示,那么在这样的情况下,汽车能通过的条件是右上角Q点到O点所在直线的距离要小于等于路的宽度y。设角度a如图,那么把要求变量表示成角度的函数 f(a) = l*cos(a) -(x - d/cos(a) ) / tan(a) 。即f(a) = l*cos(a) - (x*sin(a)-d)/sin(a)。三分法就f(a)的最大值与y比较。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
double x,y,l,w;
double cal(double t)
{
return l*cos(t) + (w-x*cos(t))/sin(t);
}
double solve(double low, double high)
{
while(high - low > eps)
{
double mid= (high - low)/3+low;
double midmid= (high - low)*2/3+low;
double ans1 = cal(mid);
double ans2 = cal(midmid);
if(ans1 < ans2)
low = mid;
else
high = midmid;
}
return low;
}
int main()
{
while(~scanf("%lf %lf %lf %lf",&x,&y,&l,&w))
{
double low = 0;
double high = acos(-1.0)/2;
double ans = solve(low, high);
//printf("%lf\n",ans);
if(cal(ans) <= y)
printf("yes\n");
else printf("no\n");
}
return 0;
}
原文:http://blog.csdn.net/u013081425/article/details/30719991