前篇文章boost::serialization 拆分serialize函数分析时就出现这样一段代码:
template<class Archive, class T>
inline void split_member(Archive & ar, T & t, const unsigned int file_version)
{
	typedef BOOST_DEDUCED_TYPENAME mpl::eval_if<
		BOOST_DEDUCED_TYPENAME Archive::is_saving,
		mpl::identity<detail::member_saver<Archive, T> >, 
		mpl::identity<detail::member_loader<Archive, T> >
	>::type typex;
	typex::invoke(ar, t, file_version);
}就去看看boost文档解释例如以下:
typedef eval_if<c,f1,f2>::type t; Return type: Any type. Semantics: If c::value == true, t is identical to f1::type; otherwise t is identical to f2::type.就是增加c::value 为TRUE就返回f1::type,否则就返回f2::type。
typedef eval_if< true_, identity<char>, identity<long> >::type t1; typedef eval_if< false_, identity<char>, identity<long> >::type t2; BOOST_MPL_ASSERT(( is_same<t1,char> )); BOOST_MPL_ASSERT(( is_same<t2,long> ));自己动手试试。使用方法还是蛮简单的,并且还能够递归有用。
看以下一个简单的样例:
//定义两个结构体
template<typename T>
struct PointerStruct
{
	typedef T* PointerT;
	static void print()
	{
		std::cout << typeid(PointerT).name() << std::endl;
	}
};
template<typename T>
struct DefaultStruct
{
	static void print()
	{
		std::cout << "default is called!" << std::endl;
	}
};然后来实现一个推断T是否是指针类型:
typedef typename boost::mpl::eval_if<//#1 boost::is_pointer<T>, boost::mpl::identity<PointerStruct<T>>, boost::mpl::identity<DefaultStruct<T>> >::type typex;//#1这段代码非常easy推断T是否是一个指针,假设true,那么type的类型就是PointerStruct<T>,否则
typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<//#1 boost::is_pointer<T>, boost::mpl::identity<PointerStruct<T> >, BOOST_DEDUCED_TYPENAME eval_if<//#2 boost::is_array<T>, boost::mpl::identity<ArrayStruct<T> >, boost::mpl::identity<DefaultStruct<T>> >//#2 >::type typex;//#1
typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<//#1 boost::is_pointer<T>, boost::mpl::identity<PointerStruct<T> >, BOOST_DEDUCED_TYPENAME eval_if<//#2 boost::is_array<T>, boost::mpl::identity<ArrayStruct<T> >, BOOST_DEDUCED_TYPENAME eval_if<//#3 boost::is_class<T>, boost::mpl::identity<ClassStruct<T> >, BOOST_DEDUCED_TYPENAME eval_if<//#4 boost::is_enum<T>, boost::mpl::identity<EnumStruct<T> >, boost::mpl::identity<DefaultStruct<T> > >//#4 >//#3 >//#2 >::type typex;//#1如今我们已经可以写出推断任一类型(boost支持非常多类型的推断)的eval_if使用方法。如今我们
然后用类型去确定调用那些方法。
首先实现用结构体包装我们要调用的方法:
为简单这里仅实现输出类型....
template<typename T>
struct PointerStruct
{
	typedef T* PointerT;
	static void print()
	{
		std::cout << typeid(PointerT).name() << std::endl;
		//do what you want to do...
	}
};
template<typename T>
struct EnumStruct
{
	static void print()
	{
		std::cout << typeid(T).name() << std::endl;
		//do what you want to do...
	}
};
template<typename T>
struct ArrayStruct
{
	static void print()
	{
		std::cout << "this is " << typeid(T).name() << std::endl;
		//do what you want to do...
	}
};
template<typename T>
struct ClassStruct
{
	static void print()
	{
		std::cout << typeid(T).name() << std::endl;
		//do what you want to do...
	}
};
template<typename T>
struct DefaultStruct
{
	static void print()
	{
		std::cout << "default is called!" << std::endl;
		//do what you want to do...
	}
};然后在实现一个包装eval_if的函数,在这个函数里面实现依据类型来调用对应的函数:
template<typename T>
inline void printTypeOfT(const T& t)
{
	using namespace boost::mpl;
	typedef 
		BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<//#1
		boost::is_pointer<T>, boost::mpl::identity<PointerStruct<T> >,
		BOOST_DEDUCED_TYPENAME eval_if<//#2
		boost::is_array<T>, boost::mpl::identity<ArrayStruct<T> >,
		BOOST_DEDUCED_TYPENAME eval_if<//#3
		boost::is_class<T>, boost::mpl::identity<ClassStruct<T> >,
		BOOST_DEDUCED_TYPENAME eval_if<//#4
		boost::is_enum<T>, boost::mpl::identity<EnumStruct<T> >, 
		boost::mpl::identity<DefaultStruct<T> >
		>//#4
		>//#3
		>//#2
		>::type typex;//#1
	typex::print();//公共接口
}这样ok了,如今測试一个:
class TestClass
{
};
enum Type
{
	a,b,c
};
void fun0()
{
	int* pInt = NULL;
	printTypeOfT(pInt);
	Type xT;
	printTypeOfT(xT);
	float Array[] = {0.0f, 1.0f};
	printTypeOfT(Array);
	TestClass TC;
	printTypeOfT(TC);
	float yF;
	printTypeOfT(yF);
}。。先会用再说!
以下另一个列子,这是boost::serialization 拆分serialize函数里面那个split_member函数就是採用eval_if来实现,
这里简单模拟一个:
class text_iarchive
	{
	public:
		typedef boost::mpl::bool_<true> is_loading;
		typedef boost::mpl::bool_<false> is_saving;
	};
	class text_oarchive
	{
	public:
		typedef boost::mpl::bool_<false> is_loading;
		typedef boost::mpl::bool_<true> is_saving;
	};
	class access
	{
	public:
		template<typename Archive, class T>
		static void save(Archive& ar, T& t,const unsigned int file_version)
		{
			t.save(ar, file_version);
		}
		template<typename Archive, class T>
		static void load(Archive& ar, T& t,const unsigned int file_version)
		{
			t.load(ar, file_version);
		}
	};
	class test_class
	{
	private:
		friend class access;
		template<typename Archive>
		void save(Archive& ar, const unsigned int file_version)
		{
			std::cout << BOOST_CURRENT_FUNCTION << " " << &(*this) << std::endl;
		}
		template<typename Archive>
		void load(Archive& ar, const unsigned int file_version)
		{
			std::cout << BOOST_CURRENT_FUNCTION << " " << &(*this) << std::endl;
		}
	};
	template<typename Archive, class T>
	struct member_saver
	{
		static void invoke(Archive& ar, T& t,const unsigned int file_version)
		{
			access::save(ar, t, file_version);
		}
	};
	template<typename Archive, class T>
	struct member_loader
	{
		static void invoke(Archive& ar, T& t,const unsigned int file_version)
		{
			access::load(ar, t, file_version);
		}
	};
	template<typename Archive, class T>
	void split_member(Archive& ar, T& t,const unsigned int file_version)
	{
		typedef 
			BOOST_DEDUCED_TYPENAME boost::mpl::eval_if<
			BOOST_DEDUCED_TYPENAME Archive::is_saving, 
			boost::mpl::identity<member_saver<Archive, T> >,
			boost::mpl::identity<member_loader<Archive, T> >
			>::type typex;
		typex::invoke(ar, t, file_version);
	}
	void fun()
	{
		text_iarchive ia;
		text_oarchive oa;
		test_class tc;
		split_member(ia, tc, 1);
		split_member(oa, tc, 1);
	}这个列子非常easy。不解释!
原文:http://www.cnblogs.com/mthoutai/p/7142473.html