http://acm.hdu.edu.cn/showproblem.php?
pid=5372
3 0 0 0 3 0 1 5 0 1 0 0 1 1 0 1 0 0
Case #1: 0 0 0 Case #2: 0 1 0 2HintFor the second case in the sample: At the first add operation,Lillian adds a segment [1,2] on the line. At the second add operation,Lillian adds a segment [0,2] on the line. At the delete operation,Lillian deletes a segment which added at the first add operation. At the third add operation,Lillian adds a segment [1,4] on the line. At the fourth add operation,Lillian adds a segment [0,4] on the line
每次插入一个线段。或删除一个已存在的线段,每次插入后输出当前插入的线段能完整覆盖存在的几条线段。
题解:对于新插入的线段。查询有多少个线段左端点大于等于该线段的左端点。
再查询有多少个线段的右端点大于该线段右端点, 两者之差就是答案。用两个树状数组搞定。
时间复杂度nlogn
一共就4种情况。画绘图应该能发现。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <map>
#include <vector>
using namespace std;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
typedef pair<int, int> pii;
typedef long long ll;
const int N = 450007;
struct Tree {
int c[N], maxn;
void init(int n) { maxn = n; for (int i = 0; i <= n; i++)c[i] = 0; }
int lowbit(int x) { return x&-x; }
int sum(int x) {
int ans = 0;
while (x)ans += c[x], x -= lowbit(x);
return ans;
}
void update(int pos, int val) {
while (pos <= maxn)c[pos] += val, pos += lowbit(pos);
}
}A, B;
int n;
set<pii> s;
int op[N], l[N], r[N];
pii a[N];
vector<int>G;
int main() {
int cas = 0;
while (cin>>n) {
G.clear();
int top = 0;
for (int i = 1; i <= n; i++) {
rd(op[i]), rd(l[i]);
if (op[i] == 0)
{
G.push_back(l[i]);
r[i] = l[i] + (++top);
G.push_back(r[i]);
}
}
printf("Case #%d:\n", ++cas);
sort(G.begin(), G.end()); G.erase(unique(G.begin(), G.end()), G.end());
top = 0;
for (int i = 1; i <= n; i++)
if (op[i] == 0) {
l[i] = lower_bound(G.begin(), G.end(), l[i]) - G.begin() + 1;
r[i] = lower_bound(G.begin(), G.end(), r[i]) - G.begin() + 1;
a[++top] = { l[i], r[i] };
}
A.init(G.size()); B.init(G.size());
int all = 0;
for (int i = 1; i <= n; i++)
{
if (op[i] == 0)
{
int ans = B.sum(r[i]);
ans -= A.sum(l[i]-1);
pt(ans); putchar('\n');
A.update(l[i], 1);
B.update(r[i], 1);
all++;
}
else {
A.update(a[l[i]].first, -1);
B.update(a[l[i]].second, -1);
all--;
}
}
}
return 0;
}
当前插入的线段能完整覆盖存在的几条线段 树状数组 HDU 5372 Segment Game
原文:http://www.cnblogs.com/brucemengbm/p/7107258.html