计数排序:不须要比較就能得出排序的顺序__比如。本章的计数排序、基数排序、桶排序
比較排序:须要进行比較才干得出排序的顺序__比如,本章的堆排序、高速排序(本质是插入排序)、插入排序
代码清单:计数排序__完美演绎下标的作用
public class Count_Sort {
	//接收须要排序的数组
	private int[] A;
	//排序后的数组
	private int[] B;
	//用于计数的数组
	private int[] C;
	// 初始化
	public Count_Sort(int[] A) {
		this.A = A;
		B = new int[A.length];
		C = new int[innitTemp()];
	}
	// 初始化暂时数组的大小
	public int innitTemp() {
		int bigest = A[0];
		for (int i = 1; i < A.length; i++) {
			if (A[i] > bigest) {
				bigest = A[i];
			}
		}
		return bigest+1;
	}
	// 计数排序
	public void sort() {
		// 把i中相应的元素映射到C中
		for (int i = 0; i < A.length; i++) {
			int value = A[i];
			C[value] = C[value] + 1;// 用C统计value有多少个
		}
		show(C);
		// 对C的值含义进行更换。换为有多少个小于当前下标的个数
		for (int i = 1; i < C.length; i++) {
			C[i] += C[i - 1];
		}
		show(C);
		// 最后得出来A[i]元素正确的插入位置
		for (int i = A.length - 1; i >= 0; i--) {
			int value = A[i];
			// 为什么要-1呢?想想,假设比5小的数是2个,那5就应该查到数组的2个位置,那么第2个位置,相应就是A[C[value]-1]
			B[C[value] - 1] = value;
			// 这个非常重要!比如,A[5]==A[2]这样的情况,A[5]插入了正确的位置,那么A[2]插入的顺序怎么算呢?就让它紧跟在A[5]后面!
			C[value] -= 1;
		}
		show(B);
	}
	public void show(int[] X) {
		for (int i = 0; i < X.length; i++) {
			int j = X[i];
			System.out.print(j + "  ");
		}
		System.out.println();
		System.out.println("--------------------------------------------------------------");
	}
	public static void main(String[] args) {
		int []A={1,2,3,3,2,1,1,5,1,3,4,5};
		Count_Sort sort=new Count_Sort(A);
		sort.sort();
	}
}
输出的结果:
0  4  2  3  1  2  
--------------------------------------------------------------
0  4  6  9  10  12  
--------------------------------------------------------------
1  1  1  1  2  2  3  3  3  4  5  5  
--------------------------------------------------------------
原文:http://www.cnblogs.com/zhchoutai/p/7019880.html